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ROBERTSON, STEVEN S. Oscillation and Complexity in Early Infant Behavior. CHILD DEVELOP-
MENT, 1993, 64, 1022—-1035. Cyclic fluctuation is a ubiquitous property of spontaneous motor
activity in the human fetus and neonate. Oscillation occurs on the scale of minutes, and irregular-
ity is one of its most characteristic properties. To determine whether cyclic motor activity (CM)
persists beyond the neonatal period (1 month after birth), and beyond what has been called the
period of the fetus ex utero (2—3 months after birth), 30 infants were studied at monthly intervals
from 1 to 4 months after birth during active sleep and awake. Spectral analysis was used to
quantify the rate, strength, and irregularity of CM. To examine the characteristic irregularity of
awake CM more closely, a nonlinear forecasting technique, developed to study chaotic dynamics
in other fields, was used to estimate the predictability of spontaneous movement in a state space
reconstructed from the time series. The rate and irregularity of CM during active sleep and
awake, and its strength during active sleep, did not change across the first 4 postnatal months.
However, there was a pronounced drop in the strength of awake CM from 2 months onward,
and a concurrent increase in the broad-band power of fluctuations faster than 2 cycles/min.
The predictability of awake CM also dropped abruptly between 1 and 2 months, especially for
prediction intervals less than 20 sec. The changes at 2 months reflect the introduction of a source
of variation with a shorter time constant than fetal-neonatal CM, and which is specific to awake
periods. The source of these effects may be moment-to-moment interactions between CM and

attention.

In the human fetus and neonate, it is
now well established that spontaneous mo-
tor activity oscillates on a scale of minutes
(Robertson, 1990). Similar temporal patterns
have been described in the embryo or fetus
of other vertebrate species (Corner, 1977;
Hamburger, Balaban, Oppenheim, & Wen-
ger, 1965; Oppenheim, 1975). This cyclic
motor activity (CM) is an order of magnitude
slower than other biological oscillations that
have rather clear adaptive significance, such
as the respiratory and cardiac cycles. CM is
also an order of magnitude faster than the
cyclic alternation of sleep states (Anders &
Keener, 1985; Prechtl, 1974) or periods of
rest and activity (Aserinsky & Kleitman,
1955). Thus CM appears to fill a gap in the
broad spectrum of behavioral and physiolog-
ical oscillations in the human, and further
illustrates the ubiquity of oscillations in liv-
ing systems (Aschoff, 1981). Understanding
CM will require knowledge of its possible

functional significance, its underlying mech-
anism, and its ontogeny (Tinbergen, 1963),
at least. The study reported here charts the
early postnatal development of human CM,
and examines its characteristic irregularity
in real time using techniques developed in
other fields to predict the future behavior of
chaotic dynamical systems.

The functional significance of CM has
not been studied extensively, and the exis-
tence of CM is not necessarily evidence of
its utility (Gould & Lewontin, 1979). How-
ever, based on the known importance of
movement and neural activity in prenatal
neuromuscular maturation (Drachman & So-
koloff, 1966; Harris, 1981), and the utility of
oscillation in other biological systems (Rapp,
1987), it has been speculated that cyclic
organization in spontaneous motor activity
may balance the benefits of activity and qui-
escence (Robertson, 1989). It is also possi-
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ble, especially after birth, that CM may regu-
late interactions between the infant and its
physical and social environment, with ben-
eficial, neutral, or adverse consequences
(Robertson, 1989). For example, recent evi-
dence indicates that, in the first 3 months
after birth, the rates of change in visual at-
tention and spontaneous activity are tightly
coupled on a scale of seconds (Robertson &
Bacher, 1992), and that irregular, rapid fluc-
tuations are suppressed during social inter-
action (Lalley, 1992).

The mechanism underlying CM has
been investigated using two complementary
approaches that have been successfully com-
bined in the study of other biological oscilla-
tions (Aschoff, 1981). One approach has
been to identify the neural substrate of CM
in an animal model (Oppenheim, 1975;
Provine & Rogers, 1977, Smotherman,
Robinson, & Robertson, 1988). Spinal cord
transection in the fetal rat indicates that
there are at least two sources of CM in that
species, with rostral sources oscillating
slower than caudal sources, but with the
faster caudal sources dominant in the intact
animal (Robertson & Smotherman, 1990a).
Another approach has been to investigate
the dynamic properties of the mechanism
without specific regard to their neural sub-
strate. For example, an experiment with neo-
nates (Robertson, in press) using a classic
resetting paradigm (Winfree, 1980) to probe
the mechanism responsible for CM sug-
gested that a simple, one-source model in
which the amplitude of oscillation is unim-
portant may be adequate to explain human
CM, although a multisource model based on
the fetal rat data cannot be ruled out. In ad-
dition, recent work indicates that both hu-
man and rat CM may be the output of a sys-
tem governed by chaotic dynamics with
relatively few degrees of freedom (Robert-
son, Cohen, & Mayer-Kress, in press; Rob-
ertson & Smotherman, 1990b). Thus both
the persistence and the irregularity of the
oscillations in spontaneous motor activity
(the core characteristics of CM) may be
equally fundamental properties of the same
mechanism.

Previous longitudinal studies have re-
vealed that CM is present in the human fetus
by midgestation (Robertson, 1985), and ul-
trasound observations raise the possibility
that it may be present in the first trimester
(deVries, Visser, & Prechtl, 1982). The char-
acteristic properties of CM change very little
during prenatal development in normal fe-
tuses (Robertson, 1985), and birth does not
induce any detectable changes either (Rob-
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ertson, 1982, 1987; Robertson, Dierker, So-
rokin, & Rosen, 1982). The developmental
stability of perinatal CM has been replicated
in fetuses and newborns of diabetic moth-
ers (Robertson, 1988; Robertson & Dierker,
1986). Although maternal diabetes affects
fetal CM early in the third trimester, espe-
cially its rate (Robertson, Klugewicz, & Lal-
ley, 1992), all the measured properties are
normal by the end of gestation and remain
so after birth, suggesting that the develop-
ment of CM is relatively well buffered from
the effects of an abnormal metabolic envi-
ronment in utero.

Given the ubiquity and stability of CM
in the fetus and neonate, a major unan-
swered question concerns the postnatal de-
velopment of human CM: is it strictly a
fetal-newborn phenomenon, or does it per-
sist after the widespread changes in other
aspects of neural and behavioral organiza-
tion that occur 2—-3 months after birth (e.g.,
Banks & Salapatek, 1983; Chugani & Phelps,
1986; Emde, Gaensbauer, & Harmon, 1976;
Hopkins & Prechtl, 1984; Wolff, 1984) and
that are thought to mark the end of the pe-
riod of the fetus ex utero (Prechtl, 1984)? In
addition to being a central developmental
question, the postnatal fate of human CM
has implications for understanding its func-
tional significance. If CM persists, there is
the possibility that it might play new or con-
tinued roles in early development with
either beneficial or adverse consequences.
Therefore, the postnatal development of CM
was investigated in the present study by ana-
lyzing the spontaneous motor activity of 30
infants during active sleep and awake states
at monthly intervals between 1 and 4 months
after birth.

In addition to describing the results of
the longitudinal study, a second purpose of
this report is to examine the irregularity of
CM in more detail. The time series in Figure
1 illustrates that the cyclic fluctuations in
spontaneous motor activity are not rhythmic;
the period of oscillation is irregular (Robert-
son, 1989). Most of the CM work to date has
focused on the cyclic organization in sponta-
neous motor activity, but has neglected its
irregularity. However, irregularity is argua-
bly the most characteristic property of CM.
It would also appear to be a significant bar-
rier to predicting the fluctuations in sponta-
neous motor activity.

The irregularity of CM has been quanti-
fied indirectly by measuring the width of the
dominant peak in the movement spectrum
(see Method). In spite of its proven use-
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Fic. 1.—Data reduction procedures used to obtain a movement time series. A, Amplified output
of the movement sensors during an awake period in a 3-month-old infant. B, Close-up of 1 min from
panel A showing thresholds set at 98 and — 122 mV to exclude sensor activity associated with breathing
movements (e.g., at 18:45). The horizontal axis is marked in 5-sec intervals. C, Time series obtained
from panel A by measuring the duration of sensor activity above the upper threshold or below the
lower threshold (panel B) during successive 5-sec intervals. D, Time series from panel C after low-pass

filtering, as described in the text.

fulness, this measure has (by design) no
strong theoretical basis, and its indirectness
may render it insensitive to changes in the
dynamics responsible for CM. As noted
above, recent work suggests that CM may be
the output of a low-dimensional system with
chaotic dynamics. Thus, at least some of the
observed irregularity in the fluctuations of
spontaneous motor activity may be deter-
ministic or rule-governed, rather than the re-
sult of random factors. In constrast to noise,
CM may have some short-term predictability
(Guckenheimer, 1982). Therefore, in order
to investigate the complexity of CM as the
output of a relatively low-dimensional dy-
namical system, a new technique is intro-
duced which has been developed to study
the predictability of such systems.

If we knew (and could measure) the im-
portant state variables in the dynamics of
CM, a straightforward approach to studying
its irregularity would be to study the predict-
ability of future states defined by those vari-
ables. However, we do not know the im-
portant state variables for CM, so it is not
possible to study directly the trajectories fol-
lowed by the system in its state space (in

which the coordinate axes are the state vari-
ables). This is a common problem faced
by experimentalists studying dynamical sys-
tems. What we have is a single-variable
readout of the system: the movement time
series. Intuitively, this time series should
contain some information about the dynami-
cal system generating it, although perhaps
not in a form that can be easily interpreted.
The possibilty of working backward from
the time series to study the underlying dy-
namics was proposed recently by Packard,
Crutchfield, Farmer, and Shaw (1980). Theo-
rems proved by Takens (1981) provide the
mathematical justification for this approach,
in which trajectories are reconstructed from
a time series by an embedding process. Ta-
kens showed that important properties of the
dynamics can be recovered from an analysis
of the reconstructed trajectories (Robertson
et al., in press).

Using this approach, a d-dimensional
space is formed whose coordinate axes are
successive values of the time series, sepa-
rated by a constant delay, A. Thus, if x; is
the time series, the vectors y; = [x;_4_y)a,
Xi—@-2)a - - - » %;] are formed, which define



points in the reconstructed state space. The
sequence of states,y; ¥;.1, - - - , then defines
a trajectory in the reconstructed state space.

Working in the reconstructed state
space, there are numerous ways to go about
predicting the future states of the system
given its current state. Farmer and Sidoro-
wich (1987, 1988) and others (e.g., Casdagli,
1989; Sugihara & May, 1990) describe both
global and local methods. In general, global
techniques try to find the functional relation
between y, and y,,r using all the data.
Farmer and Sidorowich point out some of
the problems with many of the global tech-
niques, including a strong dependence on
the specific representation or function used
to describe the relation between past and
future states. They recommend local approx-
imation techniques, in which the state of the
system at t + T is predicted using only those
previous states of the system located within
a small neighborhood of the current state. In
terms of the time series itself, this means
that future values of x, are predicted using
earlier values of the time series with a his-
tory that is similar to the history of the
current point. For example, if a three-
dimensional state space was formed by tak-
ing successive values of the time series (i.e.,
a delay of 1), states that are nearby in the
reconstructed state space correspond to sim-
ilar three-point sequences in the time series.
Local techniques for making predictions
therefore focus on the past behavior of the
system which resembles the behavior of the
system leading up to its current state, from
which predictions are to be made.

The relation between the nearby states
and their future states T time units later is
then analyzed (linear regression is often
used) to obtain a prediction for the future of
the current state, y,, at time ¢t + T. It is com-
mon to use the scalar values in the time se-
ries corresponding to the nearby points in
the state space for this purpose. For exam-
ple, x, would be the point in the time series
corresponding to the point y, = [x,_3_y)a,
X;_(d-2)a - - -+ » X¢] in the state space. An over-
all measure of predictability can then be ob-
tained by repeating this procedure at each
point along the trajectory of the system in its
reconstructed state space, and then calculat-
ing the proportion of variance in the set of
future values that is accounted for by the
predictions.

The purpose of this report is twofold.
The first is to describe the postnatal devel-
opment of CM from 1 to 4 months. The pri-
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mary motivation for conducting the longitu-
dinal study was to determine whether cyclic
organization, which is such a robust charac-
teristic of spontaneous activity during prena-
tal and perinatal life, is a fetal pattern that
disappears soon after birth, or persists and
thereby has the potential for playing a more
extensive role in early infant development.
The second purpose of this report is to intro-
duce a new approach to studying prediction,
a central problem in science, using tech-
niques based on the theory of dynamical sys-
tems. In the context of CM, the main motiva-
tion for doing this was to begin to analyze
what is perhaps the most characteristic prop-
erty of CM, its irregularity.

Method

Subjects.—Thirty infants (17 male)
were studied at monthly intervals from 1 to
4 months after birth. All were healthy neo-
nates, with birthweights between 2.61 and
4.25 kg (3.46 + 0.34, mean + SD) and gesta-
tional ages between 38 and 42 postmenstrual
weeks (40 = 1). Gestational ages were based
on the date of the mother’s last menstrual
period before the pregnancy, except for
three cases in which ultrasound measure-
ments of the fetus were used because of un-
certain dates of the last menstrual period or
irregular menstrual cycles before the preg-
nancy. All infants’ birthweights were appro-
priate for their gestational ages (Usher &
McLean, 1969). Postnatal ages at the time of
study were 30 *= 4 days (24—37, except one
at 43) at 1 month, 59 = 5 days (53-72) at 2
months, 86 * 4 days (80-93) at 3 months,
and 114 = 4 days (106—123) at 4 months.
None of the infants suffered any serious ill-
ness during the 4 months of study, although
a few sessions were rescheduled due to mi-
nor illnesses (e.g., colds, ear infections). An
additional five infants did not complete the
study; three families had to be out of town
for some of the sessions, one mother with-
drew her infant because she felt he was col-
icky, and one family withdrew their infant
for reasons not known to us. Information
about the race and economic background of
the subjects and their families was not col-
lected.

Procedures.—In consultation with the
infants’ parents, study sessions were sched-
uled to maximize the chance of obtaining us-
able data from sleep and awake states, rather
than to control the time of day at which they
were studied. Although this means that sys-
tematic diurnal variation (if any exists) in the
properties of CM appears as error variance
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in the data, sources of variability associated
with the quality of sleep and wake states
were at least partially controlled, and the
need for rescheduling to obtain usable data
was minimized. Although some infants were
studied in the evening (5 of the 120 sessions
started after 18:00), most infants were stud-
ied during the daytime (76 sessions started
before 12:00, 39 between 12:00 and 18:00),
with similar distributions at each age.

Parents were asked to bring their infant
to the lab just before an expected feeding
and to feed the infant in the lab before data
collection began. If an infant arrived awake
and happy, feeding was delayed while an
attempt was made to obtain usable awake
data. Study sessions lasted from 1.0 to 4.8
hours (152 + 53 min), with similar distribu-
tions at each age. Data acquisition was con-
tinuous except when the infant was picked
up to be soothed or fed.

The laboratory was acoustically insu-
lated and the ambient sound level was main-
tained at 50 = 2 dbA by an audio frequency
white noise generator. Colorful, high-con-
trast posters were mounted on a neutral
background approximately 100 cm from the
infant to provide an interesting but static vi-
sual environment during awake periods and
thereby maximize the amount of non-fussy
awake time obtained. Light levels were ap-
proximately 300 lux at the infant’s face when
awake; lights were dimmed when the infant
was asleep. Infants were lightly clothed to
minimize restriction of limb movement.
With two exceptions, infants were studied in
an infant seat while awake and asleep so that
state and postural differences would not be
confounded. The seat was tilted back
slightly so that the infant’s head did not fall
forward during sleep; a rolled diaper pro-
vided lateral head support. Parents reported
that their infants routinely spent both awake
and sleep time in an infant seat. The re-
maining two infants were studied prone
(while asleep) at the mother’s request.

Data acquisition.—Movement was de-
tected by two piezoelectric sensors mounted
in the back and bottom of the infant seat.
The sensors were connected in parallel and
AC coupled to a general purpose bioelectric
amplifier and filter (Coulbourn S75-01). Sen-
sor output was band-pass filtered between 1
and 40 Hz to remove slow baseline fluctua-
tions and electrical noise. Respiration was
detected by a strain gauge placed around the
infant’s abdomen over any clothing and se-
cured with tape (to the clothing) in back.
The gauge was a 10-cm length of thin (1 mm

diameter), mercury-filled, elastic tubing
(with permanently attached lead wires) that
served as one arm in a bridge circuit (Parks
Electronic Plethysmograph 271). Respira-
tion was used to distinguish active and quiet
sleep and to determine thresholds for de-
tecting body movement, as described below.
Eye opening was observed directly through
a small opening in the sound-proof divider
separating the infant from the observer
and apparatus, and recorded with a hand-
operated switch. Vocalization was detected

by a microphone that activated a voice
switch (Coulbourn S28-24).

The movement, eye opening, and vocal-
ization signals, plus a timing pulse (at 1 min
intervals) and a manually controlled event
switch, were digitized on-line at 50 Hz (Data
Translation DT2801A) and stored for later
analysis. All signals, including respiration,
were simultaneously recorded on chart pa-
per at 2 mm/sec (Astromed MTS8500) for
backup and to facilitate later data reduction.

Data reduction.—Data reduction was
done off-line. First, the chart recording was
used to code each non-fussy minute as quiet
sleep, active sleep, or awake using criteria
developed in previous studies (e.g., Robert-
son, 1987). Quiet sleep: eyes closed for a to-
tal of more than 90% of the minute, regular
respiration (see below), and no movement
except for a maximum of two startles. Active
sleep: eyes closed for a total of more than
90% of the minute, and either irregular res-
piration or movement (other than one or two
startles). Breathing was considered to be ir-
regular if, in the absence of body movement,
breath-to-breath intervals changed by a fac-
tor of 2 or more (within 20 sec) twice or more
during the minute, or there was a pause in
breathing that exceeded 3 sec. Awake: eyes
open for a total of more than 90% of the
minute, and fussing for less than 10% of the
minute. Using these criteria, agreement be-
tween independent coders is high (94% for
awake vs. sleep, and 95% for active vs. quiet
sleep).

Periods of stable state exceeding 5 min
were then identified. After 2 min in a partic-
ular state, 1 or 2 min in a different state were
ignored if they were followed by 2 or 3 min,
respectively, of the original state. For the
purpose of later analysis, a period of stable
state ended if the infant was picked up, repo-
sitioned, or disturbed in any way. Periods of
less than 10 min were not used unless there
were none longer for the infant in that state
at that age.

For each period of stable state, move-



ment time series were constructed by mea-
suring the duration of suprathreshold move-
ment sensor activity in successive 5-sec
intervals (Fig. 1). Thresholds (positive and
negative) were determined individually for
each period of stable state and were set to
exclude chest wall or other body movements
associated with respiration.

Rate, strength, and irregularity of
CM.—The cyclic organization of spontane-
ous movement in each time series was ana-
lyzed using methods described in detail in
previous reports (e.g., Robertson, 1987) and
summarized here. First, the time series was
Fourier analyzed, and the resulting cumula-
tive variance distribution was compared to
the theoretical distribution of white noise
with a Kolmogorov-Smirnov test to deter-
mine whether the fluctuations in movement
were random (Jenkins & Watts, 1968). If
they were nonrandom, the detrended time
series was spectral analyzed using a Tukey
lag window with a bandwidth of .32 cycle/
min to identify and describe any cyclic orga-
nization (Jenkins & Watts, 1968). A spectral
peak was considered to reflect the presence
of cyclic organization in the time series if it
exceeded the 99% confidence limits for the
spectral estimates of white noise.

Three measurements were made on the
dominant peak in each movement spectrum
to quantify the properties of the correspond-
ing cyclic organization in the time series: (1)
The frequency at which the peak occurred
was used as a measure of the dominant rate
or frequency of oscillation in motor activity.
(2) The height of the peak was used as a
measure of the relative strength of the domi-
nant cycle in motor activity. (3) The width
of the peak at its half-maximum point was
used as a measure of the dispersion of move-
ment variance around the peak in the fre-
quency domain and hence irregularity in the
dominant cycle of activity.

In addition to properties of the domi-
nant motility cycle, the relative strength of
broad-band, high-frequency fluctuations in
motor activity was also determined. Specifi-
cally, the percentage of movement variance
in each time series due to fluctuations faster
than 2 cycles/min was calculated from the
area under the corresponding spectral den-
sity curve (Jenkins & Watts, 1968) between
2 and 6 cycles/min (the Nyquist frequency).
The average amount of motor activity in
each time series (the mean of the sequence
of 5-sec data points), which does not reflect
its cyclic organization, was also calculated.

Predictability of CM.—The predictabil-
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ity of the fluctuations in spontaneous motor
activity was examined using the local ap-
proximation technique suggested by Farmer
and Sidorowich (1987, 1988) and discussed
above. The computational routines were
written by Schaffer and Tidd (1991). Be-
cause the measure of predictability em-
ployed tends to increase with longer data
sets (explained below), all time series were
truncated at 10 min, and those shorter than
10 min were not used. A longer minimum
length would have substantially reduced the
number of time series available for analysis.
In addition, time series in which the domi-
nant rate of oscillation (based on the move-
ment spectrum) was slower than 0.20 cycle/
min were not used, since long cycle times
provide few opportunities for close recur-
rences of similar states in the reconstructed
state space, and hence little data on which to
base forecasts. It should be noted that much
larger data sets are needed for a full analysis
of predictability using these techniques.
Thus the analysis of predictability based on
the small data sets available in the present
study was limited to comparisons between
different ages and prediction intervals. The
usable time series were detrended and then
low-pass filtered (frequency response of 10%
at 3.3 cycles/min) in order to focus on the
predictability of the dominant, slower fluc-
tuations characteristic of CM.

Each time series, x;, i = 1... 120, was
then rescaled to [0, 1] and embedded in a
three-dimensional space by constructing
vectors whose components were the three
successive values of the time series ending
with x;. The vectors, y; = [x;_5, x;_1, x;],
therefore defined points in a reconstructed
state space where the coordinate axes are
movement measured in three successive 5-
sec intervals, and the sequence y;, y;,, - - -
defined a trajectory in the reconstructed
state space. The effects of longer delays
were not investigated in this study, although
others claim the results are not sensitive to
the delay unless it is large (Sugihara &
May, 1990). A three-dimensional embedding
space was used because previous analyses
(Robertson et al., in press; Robertson &
Smotherman, 1990b) have suggested that
CM dynamics are at least that complex. An
embedding dimension greater than 3 was
not used because it requires more data and
because preliminary analysis of longer ver-
sions of some of the present time series re-
vealed no important differences in the re-
sults.

For a given point in a time series, x,,
future values were predicted using all ear-
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lier points in the reconstructed state space,
y;»j < i, within a distance of .15 (recall that

e data were rescaled to [0, 1]). This dis-
tance was selected to be as small as possible
in order to maximize the accuracy of predic-
tions, but large enough to include some
neighboring points. Prediction began with
the twenty-fifth point so that there would be
an initial library to search for nearby states.
The prediction was based on the linear re-
gression of x; .7 on x;, where x; are the points
in the time series corresponding to the
nearby states, y;, in the reconstructed state
space, and x; ., 1 are the values T sec later in
the time series. The prediction intervals, T,
were 5, 10, 15, 20, and 25 sec. Longer inter-
vals resulted in consistently low predictabil-
ity. The measure of predictability employed
was the proportion of variance in the time
series accounted for by the predictions, r2,
using those points for which predictions
were generated.

Time series from active sleep were not
analyzed. Preliminary analyses indicated
that the measure of predictability depended
strongly on the length of the periods of mo-
tor quiescence that are common in active
sleep. During periods of no movement, the
trajectory lingers in a small volume in the
reconstructed state space and thereby in-
creases the overall measure of predictability.
Although this is a valid result, it is not partic-
ularly interesting. In any case, the main mo-
tivation for examining predictability in the
present study was the drop in the strength
of CM and concurrent increase in high-
frequency power during awake states at 2
months, described below.

Results

Existence of CM.—Analysis of the in-
dividual movement time series revealed
strong evidence for CM in both active sleep

and awake states at 1, 2, 3, and 4 months
after birth (Table 1). In 274 of the 297 usable
time series, the cumulative variance distri-
bution derived from the Fourier analyses de-
parted from that of white noise (p < .05),
indicating that the fluctuations in sponta-
neous movement were not random. Sub-
sequent spectral analysis of those 274 time
series provided evidence of cyclic organiza-
tion in motor activity in all but 22, indicated
by a peak exceeding the 99% confidence
limits for the spectral estimates of a white
noise process. No more than five of the in-
fants with usable data for a particular state
and age had no evidence of CM in the time
series available. In none of the 30 infants
was CM absent at all ages in either active
sleep or awake states. The results from mul-
tiple time series from an individual infant
at a particular age and state were averaged
before conducting the group analyses re-
ported in subsequent sections.

In spite of the near ubiquity of CM, it
appears that CM was more likely to be ab-
sent after the neonatal period in this sample
(see Table 1). At 1 month, 97% of the usable
time series had statistical evidence of CM.
From 2—-4 months, CM was present in 78%—
83% of the usable time series. The drop at 2
months is not simply an artifact of the num-
ber of usable time series available, since the
numbers of usable time series have opposite
trends across months in active sleep and
awake states.

Rate, strength, irregularity.—The post-
natal development of CM was examined
with separate state (active sleep, awake) X
age (months 1, 2, 3, 4) analyses of variance
for the frequency, height, and width of the
dominant peaks in the movement spectra
(Fig. 2). Pairwise comparisons using all
available data were done to explore effects
revealed by the overall analyses of variance.

TABLE 1

MOVEMENT TIME SERIES WITH EVIDENCE OF CM

AGE (Months)

STATE 1 2 3 4
Awake ...ooevvivininnnnn, 23/24 26/33 28/35 28/35
(23/23) (24/28) (26/30) (23/27)
Active sleep ....cco..... 50/51 41/48 31/37 26/34
(30/30) (28/28) (25/28) (21/26)

NoTE.—The number of time series with statistical evidence of CM
and the total number of usable time series. In parentheses are the number
of infants contributing time series with evidence of CM and the total
number of infants with usable time series.
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sleep (open circles) and awake (filled circles)
states at 1-4 months after birth (mean = SEM).
The numbers of infants contributing data are
shown in the Table. Overall state X age analyses
of variance reported in the text were based on 12
infants with CM in both states at all four ages.
Pairwise comparisons between ages were based
on the following numbers of infants during awake
and active sleep, respectively: 19, 28 for 1-2
months; 19, 25 for 1-3 months; 20, 21 for 1-4
months; 20, 23 for 2-3 months; 19, 20 for 2—4 and
3-4 months. Comparisons between states were
based on 23 infants at 1, 2, and 3 months, and 17
infants at 4 months.
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Type I errors were controlled at .05 for each
family of comparisons with a layered Bonfer-
roni technique for adjusting a for each com-
parison (Miller, 1966; Ryan, 1960).

Rate of oscillation (Fig. 2A) was stable
across the first 4 postnatal months, with no
evidence of consistent state differences, as
indicated by the absence of any main or in-
teraction effects in the state X age analysis
of variance for the frequency of the spectral
peak (all p’s > .45). The apparent increase
in the rate of oscillation during active sleep
at 3 months was due primarily to two outliers
with frequencies above 1.4 cycles/min.

The strength of CM (Fig. 2B) dropped
precipitously at 2 months during awake
states and remained stable thereafter, as in-
dicated by a main effect of age, F(3, 33) =
3.78, p = .02, and a state X age interaction,
F(3, 33) = 3.82, p = .019, in the analysis of
variance for the height of the spectral peak.
There was no main effect of state, F(1, 11)
= 0.00, p = .99. Pairwise comparisons be-
tween ages revealed that CM strength at 1
month exceeded CM strength at 2 months
[t(18) = 4.77, p < .001], 3 months [¢(18) =
3.13, p = .006], and 4 months [¢(19) = 2.66,
p = .016]. There were no age differences
during active sleep, and the two states did
not differ at any age. The strength of CM at
1 month during awake states is not likely to
be a spuriously high value, since it corre-
sponds to levels found in newborns in previ-
ous studies (Robertson, 1987, 1988).

The irregularity of CM (Fig. 2C) was
stable across the first 4 months, but greater
in active sleep than during awake states, as
indicated by a main effect of state in the
analysis of variance for the width of the spec-
tral peak, F(1, 11) = 25.34, p < .001. There
was no main effect of age, F(3, 33) = .45,
p = .722, and only a marginal state X age
interaction, F(3, 33) = 2.26, p = .10. Pair-
wise comparisons indicated that the state
difference was due largely to the greater ir-
regularity of CM at 1 month [¢(22) = 2.27, p
= .034] and 4 months [t(16) = 2.98, p =
.009]. The absence of any differences at 2
and 3 months apparently contributed to the
marginal state X age interaction.

As might be expected, infants spent
more time moving while awake than during
active sleep, and these levels were stable
across the first 4 months (Fig. 2D), as indi-
cated by a main effect of state in the analysis
of variance for the average amount of move-
ment, F(1, 11) = 475.90, p < .001. There
was no main effect of age, F(3, 33) = 1.00,
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p = 405, and no state X age interaction,
F(3,33) = .862, p = .471. Pairwise compari-
sons confirmed large and consistent differ-
ences in the amount of movement during ac-
tive sleep and awake states at each age (all
p’s < .001). The absence of any consistent
state differences in CM’s rate and strength
of oscillation in spite of these large state dif-
ferences in the amount of movement is con-
sistent with findings in newborns (Robert-
son, 1987, 1988).

High-frequency power.—The drop in
the relative strength of the dominant oscilla-
tion in awake CM from 2 months onward,
without any evidence of increased irregular-
ity or the appearance of other stable oscilla-
tions, suggested that more complex fluctua-
tions outside the range of normal CM might
have emerged. This possibility was exam-
ined by calculating the percent of the total
movement variance accounted for by fluc-
tuations faster than 2 cycles/min (Fig. 2E).

There was a consistent increase in the
relative strength of these rapid fluctuations
at 2 months that persisted through 4 months,
as indicated by a main effect of state in the
analysis of variance for percent variance
above 2 cycles/min, F(1, 11) = 19.90, p =
.001, and a main effect of age, F(3, 33) =
3.45, p = .028. There was no interaction be-
tween state and age detected in the analysis
of variance, F(3, 33) = 1.85, p = .157. Pair-
wise comparisons revealed increased high-
frequency power during awake states (com-
pared to 1 month) at 2 months [¢(18) = 3.97,
p = .001], 3 months [¢(18) = 3.17, p = .005],
and 4 months [¢(19) = 3.82, p = .001]. These
increased levels of high-frequency power
during awake states exceeded the levels dur-
ing active sleep at 2 months [£(22) = 5.61, p
< .001], 3 months [t(22) = 3.25, p = .004],
and 4 months [t(16) = 3.78, p = .002].

Predictability.—Because of the added
constraints imposed by requiring at least 10
min of usable data to do the nonlinear fore-
casting calculations, there were not enough
infants with sufficient data during awake
states at all ages to justify an overall analysis
of variance. Pairwise comparisons between
ages were therefore conducted with separate
age X prediction interval (5, 10, 15, 20, 25
sec) analyses of variance.

The predictability of CM in the recon-
structed state space of three dimensions
dropped abruptly between 1 and 2 months
during awake states (Fig. 3), as indicated by
a main effect of age in the analysis of vari-
ance for 7%, F(1, 6) = 30.44, p = .001. The

0.8
5 sec

4

0.6 -

0.35
10 sec

¢

0.15 -
~/N
[
0.2
~ 15 sec
>
=
o)
O
lp—
.9 }\'—"/}
e
E 0.0 -
a
0.2
20 sec
0ol '\o/'_i
0.2 -

25 sec

o

o

r
N
w
>

Age (months)

F1G. 3.—The proportion of variance (mean +
SEM) in awake time series 1—4 months after birth
accounted for by predictions made using the non-
linear forecasting technique described in the text.
The prediction intervals are 5, 10, . . . , 25 sec.
Each panel is plotted with the same scale on the
vertical axis to facilitate comparisons. The num-
bers of infants contributing data at 1-4 months are
11, 19, 14, and 8. Pairwise comparisons between
ages were based on the following numbers of in-
fants with data at both ages: 7 for 1-2 months; 6 for
1-3 months; 5 for 1-4 months; 8 for 2-3 months; 6
for 2-4 months; 5 for 3—4 months.



drop occurred mainly at short prediction in-
tervals; predictability was low for the longer
intervals at both ages. This pattern is re-
flected in the interaction between age and
prediction interval, F(4, 24) = 4.73, p =
.006. The strong main effect of prediction
interval, F(4, 24) = 152.28, p < .001, reflects
the rapid decrease in predictability at longer
prediction intervals at both ages. Specific
comparisons revealed a drop in predictabil-
ity between 1 and 2 months at prediction
intervals of 5 sec [t(6) = 3.79, p = .009], 10
sec [t(6) = 3.75, p = .01], and 15 sec [¢(6)
= 3.75, p = .01]. There was a marginal
decrease in predictability between 1 and 2
months at a prediction interval of 20 sec [¢(6)
= 2.87, p = .029], but no reliable decrease
at 25 sec [t(6) = .70, p = .509]. Predictabil-
ity increased enough in months 3 and 4 so
that none of the statistical analyses revealed
any differences between month 1 and
months 3 and 4. Months 2, 3, and 4 did not
differ.

Discussion

The main results from this longitudinal
study demonstrate that the intrinsic oscilla-
tions in spontaneous motor activity of the
fetus and newborn infant do not disappear
in the first few months after birth. Fetal
CM persists beyond the neonatal period (1
month after birth) and beyond what has been
called the period of the fetus ex utero (ap-
proximately 2—-3 months after birth). It
seems appropriate to call the persistent cy-
clic organization in spontaneous activity fe-
tal CM because the rate of oscillation, which
is the defining property of any cyclic pro-
cess, does not change from fetal to neonatal
to postneonatal life.

What happens in the first few months
after birth is that the relative strength of
oscillation during awake periods declines
abruptly at 2 months, and remains low. At
the same time, the complexity of the tempo-
ral organization of awake motor activity in-
creases, as reflected by the jump in broad-
band power at frequencies well above the
normal range of CM. The increased power
at higher frequencies is not due to the emer-
gence of distinct, dominant oscillations simi-
lar to those characteristic of CM at lower
frequencies. Rather, the increased power is
distributed across the range of frequencies
above 2 cycles/min in each infant.

The decrease in the strength of awake
CM is a striking developmental change in
view of the stability of this property during
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active sleep in the late fetal, neonatal, and
postneonatal periods (Robertson, 1985,
1987, 1988; Robertson & Dierker, 1986).
Neither the basic neurobehavioral changes
that occur in the last 2 months of gestation
(e.g., Nijhuis, Prechtl, Martin, & Bots, 1982)
nor the dramatic physiologic changes that
accompany birth (Rivers, 1984) seem to in-
fluence the relative strength of CM. In the
present study, CM strength in active sleep
was unchanged across the first 4 months
after birth. This pattern of results across
studies suggests that a basic form of CM per-
sists and is expressed relatively directly in
active sleep, but that other systems with
more complex dynamics may begin to com-
pete for control of spontaneous activity dur-
ing awake periods by 2 months after birth.

The absence of any change in the irreg-
ularity of CM across the first 4 months after
birth is similar to the results of previous lon-
gitudinal studies of fetal and perinatal CM
development (Robertson, 1985, 1987, 1988;
Robertson & Dierker, 1986). The greater ir-
regularity of CM in active sleep compared
to awake states, found in the present study,
has also been a consistent finding in previ-
ous studies where state differences have
been examined (Robertson, 1987, 1988), and
is probably the result of variation in the bal-
ance of descending excitatory and inhibitory
input to spinal motor circuits that is char-
acteristic of active sleep (Vertes, 1984).
The present results provide further empiri-
cal support for the conclusion that irregular-
ity is a developmentally stable and state-
specific property of human CM. It may also
be a stable characteristic of CM in real time:
a recent experiment showed that a pulsatile
perturbation of spontaneous activity that re-
sults in CM slowing leaves its irregularity
unchanged (Robertson, in press).

In spite of the constant irregularity of
CM based on spectral analysis of the move-
ment time series, analysis of the trajectories
in a reconstructed state space using a nonlin-
ear forecasting technique revealed a small
but reliable drop in predictability from 1 to
2 months after birth. The drop in the predict-
ability of spontaneous motor activity was
mostly for short prediction intervals (less
than 20 sec). Although based on a small
number of infants, these results suggest that
there are changes in CM dynamics at 2
months that do not influence the average re-
currence time of similar states as measured
by the frequency of the dominant peak in
the movement spectrum, or its variability as
measured by the width of the peak. Both are
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properties of CM defined over multiple cy-
cles of activity. However, the changes in CM
dynamics at 2 months do appear to alter the
extent to which future states of the system
can be accurately predicted in the short
term, that is, during a fraction of a cycle.

What might be happening at 2 months
after birth? During the neonatal period, pre-
dictability in the fluctuations of spontaneous
activity may be based on the intrinsic dy-
namics of CM in relative isolation from other
systems. The increased high-frequency
power at 2 months clearly reflects the intro-
duction of a source (or sources) of variation
with a much shorter time constant than fetal
CM. Furthermore, the source is specific to
awake states. Its emergence may induce
subtle changes in CM dynamics that result
in a small but real decrease in the predict-
ability of low-frequency oscillations over
short intervals of 5 to 15 sec.

The source of these short-term effects
in awake infants may be the moment-to-
moment interaction between CM and at-
tentional systems. Although speculative, it
seems reasonable to think that a mechanism
controlling the temporal flow of behavior
might interact on this time scale with mecha-
nisms that support exploration of the envi-
ronment and extraction of information from
it (Allport, 1989). There is some evidence
that the quality of motor control in general
(Hopkins & Prechtl, 1984), and the organiza-
tion of looking behavior in particular (Banks
& Salapatek, 1983; Bronson, 1991; Canfield
& Haith, 1991), exhibit important changes
during this period of development that re-
flect a shift in the coupling between thought
and action. In the case of CM, recent data
from 2-3-month-old infants provide some
preliminary evidence for coupling between
movement and attention on the scale of sec-
onds to minutes (Robertson & Bacher, 1992).
When allowed to look ad libitum, infants ex-
hibited a tight inverse relation between the
rates of change in motor activity and visual
attention. Although they could move and
look at the same time, changes in one en-
tailed opposite adjustments in the other. The
quantitative details of the lead-lag relation
between motor activity and visual attention
remain to be worked out, but the relation
appears to be variable at this age. The ways
in which the coupling changes over the first
4 months have not been investigated.

What might be the consequences of an
interaction between CM and visual atten-

tion? In the early stages of interaction be-
tween the two, coupling might result in a
fairly rigid action system in which move-
ment drives much of visual exploration.
Rigid coupling of this sort could neverthe-
less facilitate periodic disengagement and
redirection of attention in an infant who
might otherwise become captured by salient
features in the local visual environment
(Bronson, 1991; Johnson, 1990). It might also
form a basis for more efficient information-
foraging strategies. Some have argued that
chaotic dynamics have particular benefits
for biological systems ranging from cardi-
ac function (Goldberger, West, & Bhargava,
1985) to olfaction (Skarda & Freeman, 1987)
to creativity (Crutchfield, Farmer, Packard,
& Shaw, 1986). Most of these speculations
are based on the premise that some unpre-
dictability may be good, forming a basis for
rapid adaptability and the generation of
novel patterns of activity (Conrad, 1986).
CM dynamics, to the extent that it interacts
with the control of visual attention, might
therefore be a useful source of complex vari-
ation that could increase the fraction of the
visual environment that is scanned. Analo-
gous benefits have been described for ran-
dom components in other types of search
behavior (Hoffmann, 1983). Decreased pre-
dictability could, of course, be of no partic-
ular value, or even interfere with systematic
search behavior and disrupt interactions
with dynamic environments where predict-
ability may be important, as in social interac-
tions.

Regardless of how subsequent empiri-
cal research judges these speculations, it is
important to note that some of the key results
of the present study came from the applica-
tion of techniques in nonlinear forecasting
that have been developed to study dynami-
cal systems in other fields. The potential
power of these techniques rests in part on
their strong theoretical basis. First, the time
series is not viewed as a mere string of mea-
surements, but as a stream of information
about the dynamical properties of the system
generating it. Using the time series to recon-
struct a state space, and then examining the
system’s behavior in the state space, can po-
tentially reveal some of that information.
Second, making predictions about the future
by focusing on nearby points in the state
space respects the dynamics generating the
behavior, even if the dynamic rules them-
selves are unknown. That is, predictions of
the output of the system (as measured by the



time series) are made by analyzing the out-
put at other times which have a similar
history.

In spite of these strong conceptual ad-
vantages, the techniques of nonlinear fore-
casting such as the one employed here have
serious practical limitations. Perhaps the
most important limitation is their require-
ment for large amounts of data (Farmer &
Sidorowich, 1988). Their advantages over
other methods may also be limited to low
dimensional systems governed by chaotic
dynamics. However, with proper respect for
their limitations, their utility in the study of
CM raises the possibility that these tech-
niques and the theory they are built on could
lead to new insights in other aspects of be-
havior and development as well.
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