Chapter 5
Behavioral Chaos: Beyond the Metaphor -
Steven S. Robertson, Avis H. Cohen, and Gottfried Mayer-Kress

The field of dynamics is not new (Abraham and Shaw, 1982). Applied dynamics, which
concerns itself with natural phenomena and their time-dependence, dates back at least
to Johannes Kepler, who studied planetary motions near the beginning of the seven-
teenth century. This particular problem is highly nonlinear, and has since been shown
to lack a general solution even for a simple three-planet system. Mathematical dynam-
ics, beginning with Isaac Newton in the 1660s, includes the theory of differential
equations which formally embodies the concepts of change. More recently, especially
as a result of the work of Henri Poincaré, geometric methods in which the time-
dependent changes in a dynamic system are conceptualized as motion on (sometimes
complex) surfaces has received increased attention. Experimental dynamics, dating
back to Galileo at the beginning of the seventeenth century, explores the properties of
dynamic systems with mechanical and, today, computer models. In fact, it is the power
of computers which promises to unlock many of the fundamental secrets of nonlinear
dynamics to modern experimentalists (e.g., Lorenz, 1963).

Dynamic systems theory has recently caught the conceptual fancy of sdientists
trying to understand behavioral and psychological organization and development.
Why is that? It seems there are a number of reasons. At the core is the fact that the
organisms we seek to understand are dynamic systems. They exhibit time-dependent
changes on scales spanning at least ten orders of magnitude, from fractions of a second
to decades. Much of our work is an attempt to describe, model, and predict this
activity, including the factors that control it. Above all, we are interested in organiza-
tion and pattern, whatever our level of analysis or temporal scale. We study these
complex systems and try to discover where the organization comes from, what is
responsible for its stability and instability, and how structural reorganizations come
about. We also share the belief that, to some extent, there is an underlying lawfulness
to the phenomena we study. These are, of course, the concepts and aims of general
theories of dynamic systems.

There is a danger, however, in this new fascination with dynamic theory. The
danger lies in the temptation to naively adopt a new terminology or set of metaphors,
to merely redescribe the phenomena we have been studying for so long, and then
conclude that we have explained them. Because dynamic concepts and theory are
seductive, we may mistake translation for explanation. As a first step in going beyond
mere redescription, we should apply the theory to particular phenomena and pursue
the application in as rigorous a fashion as we can, without trying to sidestep the
theory’s mathematical foundations. But the application should not be blind. We must
demonstrate at each step that the phenomenon exhibits the characteristics assumed or
predicted by the theory. In this process we must acknowledge the constraints imposed
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by our level of analysis (e.g.. overt behavior) and by limitations in the quality and
quantity of our measurements. Ultimately, the goal should be to build a dynamic
model of the mechanism controlling the observed phenomenon from which new ob—
servable properties can be deduced and subjected to experimental test.

The purpose of this chapter is to take a particular phenomenon-—the cydicity in
spontaneous motor activity in the human neonate—and examine it closely from the
theoretical framework of dynamic systems. We ask very specific questions of both a
qualitative and quantitative sort, illustrate the analyses required to address those ques-
tions, and critically evaluate the results from both computational and psychobiological
perspectives.

Cyclic Motor Activity

The specific behavioral phenomenon we will analyze is the cyclic fluctuation in sponta-
neous motor activity (CM), comprised of general movements of the limbs, trunk, and
head, and more isolated or stereotyped movements, with a cycle time on the order of
a few minutes or less. The cyclicity has been observed in a variety of species (Comer,
1977; Hamburger, Balaban, Oppenheim, and Wenger, 1965), including the human
neonate (e.g., Robertson, 1982) (figure 5.1). Some properties of CM in the human
infant, such as the dominant frequency of oscillation and the proportion of movement
variance accounted for by the oscillation may be relatively independent of the average
level of activity {(Robertson, 1987).

Development of Cyclic Motor Activity

In the human, CM emerges at least by midgestation (Robertson, 1985). It is possible
that the mechanism responsible for CM is operating much earlier, perhaps in the first
trimester. Suggestive evidence for this comes from ultrasound observations of normal
fetuses in which burst-pause organization is noted around the 12th postmenstrual
week (deVries, Visser, and Prechtl, 1982). The clear burst-pause organization, which
depends (by definition) on the existence of periods of total motor quiescence, quickly
disappears and is replaced by longer periods of more continuous but fluctuating activ-
ity (deVries et al., 1982). An important unanswered question concerning the ontogeny
of CM is whether the early burst-pause organization is generated by the same mecha-
nism responsible for the oscillations in spontaneous activity which have been studied
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Figure 5.1
Movement time series from an awake infant studied 2 months after birth. After detrending, the data were

rescaled to the interval {0, 1). In this illustration, the time series has been smoothed with a 15-second
moving average.
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in the second half of gestation. During the second half of gestation, human CM
changes very little in terms of properties that can be quantified using spectral analysis
{Robertson, 1985). The frequency and relative strength of the dominant motility cycle,
and the dispersion of movement variance around the dominant cycle in the frequency
domain, all remain relatively stable during a time when other aspects of neurobehav-
ioral organization (e.g., sleep and wake states) undergo dramatic changes.

Some evidence regarding factors that can alter CM comes from studies of dia-
betic mothers. Fetal CM is disrupted by maternal diabetes early in the third trimester
{Robertson and Dierker, 1986) and perhaps earlier, although this has not been investi-
gated. The oscillations in spontaneous activity are a bit slower, and the differences are
related to the control of the mother’s diabetes. It is not known, however, whether the
effects are acute in nature, reflecting short-term alterations in maternal metabolism, or
whether they are manifestations of a different developmental trajectory related to very
early disruptions in fetal neural organization caused by maternal diabetes. In either
~ case, CM appears normal by the end of gestation, suggesting that the underlying
mechanism is developmentally buffered from the earlier effects of maternal diabetes.

Birth, in itself, does not appear to induce any changes in CM. The cyclic organiza-
tion of spontaneous newborn activity measured during active sleep is quantitatively
similar to fetal CM in the last month of gestation (Robertson, 1987). These findings are
consistent with other evidence of neurobehavioral continuity across birth (Precht],
1984). Similar results were obtained from newborn infants of diabetic mothers, includ-
ing those with clinical evidence of exposure to an altered metabolic environment in
utero (Robertson, 1988). Furthermore, the characteristic cydicity is observed during all
sleep and wake states, and the quantitative properties of CM estimated by spectral
analysis (frequency, strength, etc.) are similar across wake states, which vary enor-
mously in the average level of activity (Robertson, 1987, 1988).

The functional significance of CM is unknown. However, the consequences of
movement and the underlying neural and neuromuscular activity on the development
of muscles, bones, joints, and neural connectivity have been well documented (e.g.,
Drachman and Sokoloff, 1966; Harris, 1981). There is also some evidence that periodic
activation, compared to continuous stimulation at the same average rate, may facilitate
normal synapse elimination in neonatal rat muscle (Thompson, 1983). It has been
speculated that cyclicity per se may have beneficial consequences by balancing the
benefits of activity and inactivity (Robertson, 1989). It has also been speculated that
CM may regulate interactions between the young infant and its physical and social
environment, either directly at the behavioral level, or indirectly through the central
modulation of perceptual and cognitive processes (Robertson, 1989). In any case, as we
discuss below, a good dynamic model of CM might, through its structure or its
parameters, suggest ways in which to begin studying the functional significance of CM
in a systematic manner.

Characteristic Properties of Cyclic Motor Activity

The investigation of human fetal and neonatal CM reviewed above has revealed
a fundamental property of the oscillations in spontaneous motor activity: they are
sustained. They are a nearly ubiquitous, constant feature of spontaneous activity dur-
ing a period of significant developmental changes and across qualitatively different
behavioral states, and they persist under at least some pathologic conditions. This is
not to say that the quantitative properties of CM measured by spectral analysis are
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fixed, but rather that they remain within well-defined limits under a range of circum-
stances. The oscillations appear to be intrinsic to the developing motor system and not
normally driven or elicited by extrinsic factors. -

Although the stable presence of CM is striking, it is matched by another equally
robust property of the oscillations in spontaneous activity: they are irregular. A look
at any movement time series immediately reveals this second, seemingly contradictory
property of CM. The irregularity in CM has tended to be overlooked for two impor-
tant reasons. First, the methods that have been used to analyze CM (spectral analysis),
although powerful and capable of yielding quantitative estimates of some central
characteristics of oscillatory phenomena (e.g., their frequency and strength), are de-
signed to extract the linear contributions of regular, periodic processes in complex
waveforms. Irregularity is reflected only indirectly as the finite width of the peak in the
movement spectrum, or the presence of broadband power across portions of the
frequency domain. Second, through our reliance on linear methods of analysis we have
come to associate regularity with lawfulness and irregularity with noise in measure-
ments or the environment. The theory of nonlinear dynamics, however, which focuses
explicitly on the sequential, point-to-point fluctuations in the behavior of the system
offers another alternative. It is possible, in principle, to account for both the stability
and the minute-to-minute irregularity of CM with the same dynamic model, eliminating
the need to postulate a causal role for stochastic sensory inputs or measurement error
(Guckenheimer, 1982). It is to this task that we now tum.

State Space

The literature on dynamic systems has expanded very rapidly in recent years and there
are now many useful texts and collections of papers. The four-volume series on dynam-
ics by Abraham and Shaw (1982, 1983, 1985, 1988) is an exceptionally clear visual
presentation of dynamic theory, which is summarized in Abraham and Shaw (1987).
Other useful texts requiring varying degrees of mathematical expertise which empha-
size chaotic dynamic systems are Glass and Mackey (1988), Guckenheimer and Holmes
(1983), Schuster (1988), Thompson and Stewart (1986), the Springer Series in Synerge-
tics edited by Haken (e.g., Haken, 1983), and the proceedings of a recent conference at
the New York Academy of Sciences (Koslow, Mandell, and Shlesinger, 1987).

Before analyzing the dynamic properties of CM, it will be useful to introduce some
of the basic concepts, definitions, and terminology that are required. In order to do this,
assume (1) that we know the important variables that describe the mechanism responsi-
ble for CM and its evolution in time: these are the state variables in the sense that
specifying the (time-dependent) value of each of these variables fully describes the
current state of the system; (2) that we know how the state variables are related to one
another in time, and how subsequent values of each depend on the previous values of
all of them, and (3) that we know the parameters which weight or modify the time-
dependent relationships among the state variables. -

With a knowledge of the state variables for this dynamic system, we can construct
a state space in which the coordinate axes are the state variables. The state of the
system at any given time is then represented as a position in this (possibly high-
dimensional) state space. The temporal evolution of the system is represented as a
trajectory in the state space. Knowledge of how the state variables are related to one
another in time allows us to trace the trajectory followed by the system from any
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arbitrary starting point. The collection of trajectories followed by the dynamic system
is the phase portrait of the system. Finally, knowledge of the parameters involved in
the functional relationships among the state variables permits us to specify the region
of state space visited by the system and the precise nature of its temporal evolution in
that region.

One (or more) region of the state space for a dynamic system may contain an
attractor. Trajectories which begin in a certain region of state space (the attractor’s
basin of attraction or inset) lead eventually to a more restricted region of state space
(or limit set). Similarly, small deflections of trajectories from an attractor which do not
take the system out of the basin of attraction will be followed by a return to the
attractor. Thus the theoretical concept of an attractor in the state space of a dynamic
system embodies the experimental notions of stationary asymptotic behavior and
stability following the transient response to a brief perturbation.

The types of attractors that have been studied in theory and identified experimen-
tally include the following. Fixed point attractors are stable steady states in state space,
and represent the absence of change in all of the state variables and the tendency to
return to that identical state after small perturbations. Limit cycles are attracting loops
in state space, and represent perfectly periodic (not necessarily sinusoidal) behavior of
the system. An attracting torus (doughnut) in state space, toward which trajectories
converge but then wind around without ever exactly repeating, represents quasi-
periodic behavior due to the presence of two (or more} incommensurate frequencies.
Finally, there are chaotic attractors where trajectories diverge in some direction(s) but
converge in others. The exponential divergence (in at least one direction) of nearby
trajectories on a chaotic attractor results in the characteristic long-term unpredictability
in the behavior governed by chaotic dynamics. The stretching is combined with fold-
ing in other directions, however, so that the diverging trajectories remain in a bounded
region of state space and lie on a well-defined (although topologically complex) sur-
face. It is the deterministic irregularity of chaotic dynamics that makes it a seductive
metaphor for describing the sustained but somewhat unpredictable fluctuations in
spontaneous motor activity. The seduction comes from the possibility of accounting
for both the stability of CM and its characteristic irregularity with the same dynamic
model. The question is how we can test the hypothesis that-CM is best described by
chaotic dynamics and how we can carry the analysis beyond the simply descriptive.

Reconstructing a Phase Portrait

We can begin to go beyond the metaphoric description of CM as chaos by attempting
to find an attractor in CM state space, determine- its geometry, and measure the rate
at which nearby trajectories diverge. These are reasonable and concrete first steps
which, if successful, would need to be followed by additional efforts to characterize
_ the properties of the attractor and the underlying dynamics in more detail, includ-
ing studies of structural instabilities in the CM attractor and the relevant control
parameters.

The first problem, as in many complex systems, is that the state variables for
CM are unknown. Hence the state space for CM is undefined, as are the trajec-
tories generated by the unknown dynamics. We therefore begin from a position of
fundamental ignorance of the system. What we do have are data. In the case of CM,
we have a readout of the system in the form of a movement time series. Intuitively, the
details of this time series—the evolution of motor activity over many minutes—
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should reflect in some (perhaps very complicated) way the underlying dynamics of CM
(Packard, Crutchfield, Farmer, and Shaw, 1980; Takens, 1981). The theorems proved by
Takens (1981) demonstrate that generically one can reconstruct a phase portrait of a
dynamic systemn from a single time series of measurements on that system. The mea-
surements need not be made on one of the state variables, as long as the measured
variable reflects in a reasonably smooth way (at least through the second derivative)
the trajectories on the unknown attractor.

Using Takens’s method, a phase portrait is reconstructed in the following manner.
Let x,, x5, .... x, be the experimental time series, and let m be the dimension of the
unknown state space. Construct vectors y; whose components are successive values of
the time series beginning with x;. In general, y; = [x;, 1;,,. 2,50, - - .. Titam) Where tis
a fixed time delay. The vectors y; define points in a 2m + 1 dimensional embedding
space where the coordinate axes are measurements made at integer multiples of the
time delay, ¢. The sequence y;, ;4. ... therefore defines a trajectory in the embedding
space (figure 5.2). Takens's theorems show that a phase portrait reconstructed in this
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Figure 5.2

(A) The time series in figure 5.1 embedded in three dimensions (time delay = 15 seconds) and projected
onto two dimensions. Successive points along the trajectory have been connected with a cubic spline. The
view is from below the plane formed by the x;- and 1,,,-axes (both increasing to the left, 1, below x..,,),
looking obliquely along the x;, ,,-axis. Scale is arbitrary, but is the same for each axis. (B) When the rapid
fluctuations are suppressed with a low-pass filter (frequency response = .1 at 3 cycles/min) before em-
bedding, structure not evident in A becomes visible,
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way is an image of the unknown attractor which preserves many of its geometric and
dynamic properties. Thus it is possible, beginning with a single time series consisting
of a readout of the unknown dynamic system, to reconstruct a phase portrajt from
which properties such as the dimension of the unknown attractor can be estimated.

There are at least two practical problems that must be faced, however. First, since
the dimension of the unknown attractor, m, is unknown, the dimension of the em-
bedding space, 2m + 1, is not known a priori. In practice, one usually begins with a
small embedding dimension and increases it one step at a time, estimating the property
of interest (e.g., the atiractor’s dimension) at each step until the estimates converge
(e.g. a loop has one dimension whether it is drawn on a two-dimensional surface,
in a three-dimensional volume, etc.).

The second practical problem is how to select the time delay, ¢, for reconstructing
the phase portrait. In theory (Takens, 1981) it does not matter generically, but in
practice it does. With very small delays, the components of the vectors y; will be
nearly the same, and so the trajectories in the embedding space will all be compressed
into a long, thin volume equivalent to a diagonal in 2m + 1 dimensions. The goal, of
course, is to have the reconstructed phase porirait be as uniformly distributed as
possible so that its properties can be accurately measured. If the attractor is, in
fact, low-dimensional, it may be possible to inspect three-dimensional plots (or two-
dimensional projections) of the reconstructed phase portrait for different time delays
and select the time delay which gives the least compression of trajectories. For
higher dimensions this is not possible. One method, which is described in more detail
below, is to use the time delay that minimizes the redundancy in observing pairs of
points separated by that amount of time (Fraser and Swinney, 1986). This has the
effect of maximizing the independence of the coordinate axes in the embedding space.

Existence of an Attractor

The logical first step is to determine whether an attractor exists in the state space of
CM. Given the potentially large number of degrees of freedom in the neuromotor
system generating CM, is there a relatively low-dimensional attractor on which the
system's trajectories lie? One could argue that since CM is sustained and the fluctua-
tions are bounded, there is an attractor, perhaps even a noisy fixed-point attractor. This
kind of argument, however, is not precise enough to evaluate the explanatory power
of dynamic systems theory.

If we had a clear picture (visual or abstract) of the reconstructed phase portrait of
CM, we could in principle make two important inquiries. First, we could ask whether
trajectories that begin some distance away converge toward the phase portrait, which
would be evidence that it is an attractor. In studies with human infants, however, we
are not at liberty to manipulate such initial conditions (where a trajectory begins).
This would correspond to stopping and restarting the mechanism responsible for CM,
which we know is sustained under normal conditions. In an animal model, on the other
hand, it might be possible to control initial conditions, perhaps pharmacologically.

A more plausible approach is to examine the way ongoing CM responds to pertur-
bations. Do trajectories in the reconstructed phase portrait, when deflected by an
experimental perturbation, retum to the original phase portrait? If so, it would be
evidence for a CM attractor. Although there is no fundamental theoretical difference
between manipulating initial conditions and studying the response to single perturba-
tions, the latter is much more tractable experimentally.
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Obtaining evidence for the existence of an attractor is clearly important in this
endeavor to apply dynamic systems theory to CM. But the kinds of experiments just
described require a clear picture of the phase portrait in order to determine whether
trajectories converge toward it from different initial conditions, or return to it follow--
ing a perturbation that deflects them away. So the practical first step is to get a clear
picture of the phase portrait. '

‘Dimension

The first level of knowledge needed to characterize an attractor is its dimension
(Farmer, Ott, and Yorke 1983). Intuitively, an attractor's dimension is a measure of its
geometric complexity. For example, a fixed point has a dimension of 0, a limit cycle (a
loop in state space) has a dimension of 1, and a doubly periodic attractor (a torus in
state space) has a dimension of 2. The attractor’s dimension also places a lower bound
on the number of variables that will be needed to model the dynamics of the system
on the attractor.

There are many ways to define the concept of dimension (e.g.. Eckmann and Ruelle,
1985; Farmer et al., 1983; Grassberger and Procaccia, 1983; Mandelbrot, 1982; Mayer-
Kress, 1986). The Kolmogorov capacity measure is one of the simplest and intuitively
straightforward. If one determines how many very small cubes (hypercubes, really,
since they may be more than three-dimensional) with edge length s it takes to com-
pletely cover the attractor, then the capacity dimension is defined as:

. log N(s)
(D d = zl_[.?, log (1/5)

where N(s) is the number of cubes. For a fixed point, N(s) = 1, so d. = 0. Similarly, for
a loop'of length L, N(s) = L/s, so the limit as s — 0 yields d, = 1, which agrees with
our intuition. When this definition is applied to other attractors, however, the value of
d,. obtained is not an integer. These strange attractors are fractal objects with complex
and sometimes beautiful geometry. As many have argued (e.g.. West and Goldberger,
1987), fractal geometry is not merely a curiosity or an invention of mathematicians,
but appears to characterize many objects in the natural world, from lungs to coastlines.
Noninteger dimension is frequently a characteristic of chaotic attractors, although not
necessarily (Grebogi, Ott, Pelikan, and Yorke, 1984).

The Kolmogorov capacity is a metric dimension (Farmer et al., 1983) in the sense
that only the basic concept of distance is required for its definition. This contributes to
its intuitive appeal but leads to problems when the Kolmogorov capacity or other
metric dimensions are used to characterize highly nonuniform chaotic attractors. A
typical feature of many chaotic attractors is the tendency for certain regions on the
attractor to be visited by the system more frequently than others. Rather than moving
gradually from one region to another, trajectories may linger in one region and then
move rapidly to another. Or trajectories may evolve smoothly, but return to some
regions more often than others as a result of the stretching and folding that character-
ize chaotic attractors. The highly nonuniform fluctuations in spontaneous motor activ-
ity would suggest that, if a CM attractor exists, we might expect it to have this
property.

The information dimension, in contrast, is a probabilistic measure of dimension (and
a generalization of the Kolmogorov capacity) which takes into account the relative
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probability of finding the system on each small region of the attractor (Farmer et al,
1983}

. logI(s)
@ a4 = il‘I.T(‘l) log (1/5)

where
Nis)

(3) Is)=—Y RlogP
i=1

and P, is the probability of finding the system in the ith cube. The information
dimension, and other probabilistic definitions of dimension, therefore capture more of
the dynamics of the system whose stable behavior is characterized by a nonuniform
attractor.

In most cases, however, it is extremely difficult to implement the box-counting
procedures necessary to calculate the information dimension from a particular data set.
Therefore, because of the fundamental importance of knowing an attractor’s dimen-
sion, there has been a substantial effort to develop measures of dimension that are
computationally tractable (Mayer-Kress, 1986). At the core of some of the more useful
methods (e.g., Grassberger and Procaccia, 1983) is the following intuitive notion: if
points are distributed in a d-dimensional volume, then the number of points within a
distance r of some reference point will be proportional to r. For example, if the
points are distributed along a line (such as a limit cycle in state space), then the number
of points within a distance r of some reference point will simply be proportional to the
distance r. Similarly, if the points are distributed on a two-dimensional surface, the
number of points within a distance  will be proportional to the area swept out by the
distance r, i.e., proportional to r*. Thus an intuitive generalization is:

(4) N =o'
which leads to the very useful result that
(5) log N{r) = constant + dlogr

That is, the slope of log N(r) vs. log r should be an estimate of the dimension, 4.

Grassberger and Procaccia (1983) define the correlation integral, C{r), as the average
value of N(r) across all the points on the reconstructed phase portrait. They show that
for a sufficiently large number of points and sufficiently small r, a scaling region will
exist in which log C(n) vs. log r is linear. The correlation dimension is defined as the
slope in that linear scaling region. Furthermore, the correlation dimension provides
a lower bound on the information dimension defined above.

There are a number of important caveats, however (Guckenheimer, 1984; Mayer-
Kress, 1987). Obviously, the relationship will not hold when r is large enough to
extend beyond the attractor. More important, the scaling relationship will not hold
when the distance r, which defines the neighborhood of the reference point, is less than
the separation of the points in state space. Thus, we would expect that only for
intermediate values of r might there be a scaling region in which this relationship
holds. This is not a trivial matter, since the definition of the correlation dimension
holds in the limit of very small distances. Two factors conspire to destroy the scaling
region when working in a state space reconstructed from an experimental time series.
First, poor resolution in the data means large distances between points in the recon-
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structed state space. Second, noise in the measurements is space-filling at small dis-
tances in the state space and so will mask the scaling relationship.

The second caveat is the number of data points required for a reliable estimate of
the correlation dimension. Although it can sometimes be done with less {Kurths and
Herzel, 1987), 10¢ data points are recommended. For anything except low-dimensional
attractors, this constraint is crippling for most of us in the behavioral and develop-
mental sciences, and emphasizes the practical importance of experiments designed to
measure changes in dimension rather than their absolute value.

The third caveat is that considerable information about the dimensional complexity
of the attractor may be lost in the averaging process proposed by Grassberger and
Procaccia (1983). For a highly nonuniform attractor, the local dimension evaluated at a
single reference point may vary considerably for reference points in different regions
of the attractor. It may therefore be useful to estimate the local dimension of an
attractor for a sequence of reference points along a trajectory to obtain information
about the temporal evolution of the dimensional complexity. Clearly, however, the
demands for many data points and computational effort are multiplied approximately
by the number of reference points used, a situation which for most of us studying
behavioral organization is prohibitive.

Estimating the Dimension of a Cyclic Motor Activity Attractor

As noted earlier, we have no direct evidence that a CM attractor exists. But if one
exists, its dimension should be preserved in a phase portrait reconstructed from a
suitable readout of the underlying dynamic system, subject to the additional con-
straints of resolution and noise just discussed. In the following therefore, we illustrate
the analysis of a reconstructed phase porirait for evidence of a finite-dimensional
attractor.”

The movement time series shown in figure 5.1 was obtained from an infant during
approximately 27 minutes of awakeness 2 months after birth. The infant was studied
in a sound-attenuated laboratory, and had an interesting but static visual environment.
Body movement was detected by sensors beneath the infant. The sensor output was
digitized on line at 50 Hz and stored for later processing. Thresholds were determined
(off-line) which represented the range of sensor output due to respiration when the
infant was not otherwise moving. The movement time series was formed by counting
the number of 0.1-second intervals that contained suprathreshold sensor activity in
each second during the 1630 seconds during which the infant was awake and not fussy.
Linear and very slow curvilinear trends (less than 0.11 cycle/min) were removed before
subsequent analysis.

The time series was then embedded in an embedding space of successively higher
dimension using the method of delays (described earlier) proposed by Takens (1981)
and FORTRAN routines written by Schaffer, Truty, and Fulmer (1989). The time
delay was set at 15 seconds based on the first minimum of mutual information, as
suggested by Shaw (Fraser and Swinney, 1986). Mutual information is a general mea-
sure, based on information theory, of the extent to which the values in a time series
can be predicted by earlier values. It is not limited to linear dependence like the
autocorrelation function. Fraser and Swinney (1986) argue that when a phase portrait is
reconstructed from a time series using a time delay that minimizes mutual information,
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the trajectories in the reconstructed state space will be maximally separated, which in
turn will facilitate their analysis.

For each embedding dimension, the correlation dimension of the reconstructed
phase portrait was estimated using the procedure proposed by Grassberger and
Procaccia (1983) described above, and the computational routines of Schaffer et al.
(1989). Figure 5.3 shows the results. For computational simplicity, the original data are
rescaled to the interval {0, 1). The value of r is the usual Euclidean distance in the
state space reconstructed from the rescaled data. Panel A plots In C(r) vs. In r separately
for each embedding dimension, for In r between —4.7 and 0. As In r increases, the
number of points in the neighborhood defined by the distance r increases, as expected,
until all points are included when r = 1 (Inr = 0).

To aid in finding the scaling region where In C{r) increases in an approximately
linear fashion with Inz, the slopes of the small line segments connecting successive
values of In C(r) are plotted against Inr in panel B (again, for each embedding dimen-
sion). For other than the smallest values of In r (corresponding to distances smaller than
the resolution of the original measurements) it is apparent that the slopes increase
as the time series is embedded in successively higher dimensions. For Inr near —2
(marked by the vertical bars), the slopes of the small line segments (in panel A) do not
systematically increase or decrease with changes in In7, and for some embedding
dimensions (e.g., 4, = 3) they are relatively constant. This suggests the existence of
approximately linear scaling regions in the plot of In C(r) vs. Inr, which are marked in
panel C. Furthermore, after an embedding dimension of 3, the slopes in this region
around Inr = —2 stop increasing. This suggests, although not strongly, that the
correlation dimension might be converging to a value between 3 and 4. It is worth
pointing out that various algorithms have been developed to automate the process of
finding a scaling region of acceptable size (e.g., Albano, Mees, deGuzman, and Rapp,
1987: Mayer-Kress, Yates, Benton, Keidel, Tirsch, Poppl, and Geist, 1988).

Returning to panel A, straight lines are fitted to the plots of In C(r) vs. Inr in the
presumptive scaling region. These are shown in panel C. The slopes of these best-fit
(by least squares) lines, which are the estimates of the correlation dimension for each
embedding dimension, are plotted in panel D along with their 95% confidence infer-
vals. The apparent convergence of these estimates suggests that the phase portrait
reconstructed from the movement time series has a finite dimension with a value of
approximately 3.1 + .3 (the value for 4, = 5). For noise (or a high-dimensional phase
portrait) the estimates of the correlation dimension would continue to increase as
the embedding dimension increased (as in figure 5.4 below). To the extent that the
reconstructed phase portrait is an image of the unknown CM attractor which pre-
serves its dimension, these results are consistent with the existence of a relatively
low-dimensional attractor governing the dynamics of spontaneous mofor activity.

Before discussing the possible implications of this finding, it is appropriate to draw
attention to the limitations of the results. First, the scaling region is of very small size,
which decreases our confidence about its existence as well as limiting the accuracy
of the estimate of the slope of InC(r) vs. Inr in that region, as seen in panel C
and reflected in the error bars in panel D. Second, the slopes in the region around
Inr = — 2 are not constant, but fluctuate somewhat. Both of these limitations are due
in part to the relatively poor resolution in the original data and almost certainly to the
presence of noise, or fluctuations in the movement data that do not directly reflect the
dynamics responsible for CM.
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Figure 5.3

Dimension calculations for the data in figure 5.1 (unsmoothed). (4) Correlation integral vs. distance for
embedding dimensions 1 through 6. (B) Slope of the line segments connecting adjacent estimates of the
correlation integral in A, plotted against distance for each embedding dimension. Verfical bars mark the
scaling region. {C} As in A, but with points not connected. The solid lines are the least-squares regressions
of In C(r) on In r in the scaling region. (D) Estimates of the correlation dimension, and their 95% confidence
intervals, based on the slope of the regression lines in C, plotted for each embedding dimension.
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These are not easy problems to solve. The limited resolution results from the
decision to look during 0.1-second intervals for suprathreshold activity in the move-
ment sensors. Looking more often would provide more resolution in the data, but
might be of questionable validity at the behavioral level because few limb or body
movements last less than 0.1 second. On the other hand, individual muscle contrac-
tions can be very brief, and might contain information about the dynamics underlying
CM. In the data analyzed here, the presence of noise was minimized by setting the_
thresholds used to process the raw sensor signals wide enough to exclude most sensor
activity due to respiration. But this inevitably also excludes small amounts of sensor
activity due to body movement. When the thresholds were set closer, the estimates of
the correlation dimension did not converge (figure 5.4). However, if the data from the
narrow thresholds are smoothed using a 15-second moving average, the scaling region
is large, the estimates of the slopes of In C(r) vs. Inr have very small statistical error,
and the estimates of the correlation dimension converge to a value of 3.27 4+ .03 at
d, = 5 {figure 5.5). This value is within the error of the estimate (3.1 + .3) based
on the unsmoothed data (see figure 5.3) in which wider thresholds were used in
processing the raw sensor signal. Although this degree of smoothing should not affect
the low-frequency events that have been characterized as CM, there may be higher-
frequency motor events that are important for a more complete understanding of CM
and that are lost in the smoothing procedure.

Implications of Finite Dimension
There are several implications of finding that the phase portrait reconstructed from a
movement time series has a correlation dimension between 3 and 4. First, and possibly
most important, is that the fluctuations in spontaneous motor activity are not simply
due to noise (Rapp et al, 1986). If they were, the dimension estimates would fail to
converge. That is, the slope of InC(r) vs. Inr would continue to increase as the
embedding dimension increases, since noise will be space-filling in the reconstructed
state space. Thus, we are now more justified in talking about the underlying dynamics
of CM as being deterministic. It is important to note in this context that the failure of
the dimension estimates to converge would not be evidence that the fluctuations are
random. As discussed earlier, there are severe data requirements in order to resolve
the image of a high-dimensional attractor in the reconstructed phase portrait. Even
with enough data, the presence of noise and poor resolution can be limiting factors.
Finding a correlation dimension between 3 and 4 also suggests that the potentially
large number of degrees of freedom involved in the dynamics of spontaneous motor
activity may be reduced to a handful in stable CM. This reduction in degrees of
freedom is theoretically interesting in its own right as an example of self-organization
{Haken, 1983). If similar results are obtained in more extensive analyses of additional
samples of CM, the implication is substantial. Finding evidence for low-dimensional
dynamics implies that the complex and irregular nature of CM is the output of an
effectively simple system. This insight is certainly not accessible through atheoretical
statistical analysis of the movement time series, nor is it accessible through otherwise
powerful methods such as spectral analysis. Since we know that the number of active
elements in the neuromotor system generating CM is very large, the reduction in
degrees of freedom implies there is substantial linking or coupling of those elements in
stable CM. Identifying the small number of state variables in stable CM is likely to
depend on experiments with animal models. In any case, it will be especially important
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Dimension calculations for data obtained during the same 1630 seconds as in figure 5.1, but with narrower
thresholds and hence greater noise. A and B are the same as in figure 5.3, except there is no scaling region
(and hence no panels C and D).
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Dimension calculations for the data used in figure 5.4, but after smoothing with a 15-second moving
average. A-D are the same as in figure 5.3.
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to determine whether those variables have psychobiological meaning. If they do, it is
much more likely that a good dynamic model of CM will lead to insights into the
functional significance of CM as an action system through which the infant interacts
with the rest of the world. :

Finally, it is important to emphasize again the practical difficulties in estimating the
dimension of an attractor from the analysis of a phase portrait reconstructed from a
time series. We may not be justified in making strong quantitative inferences about
dimensionality if the experimental data are limited in amount and quality. Although
moderate limitations might not seriously damage conclusions about nonrandomness,
low degrees of freedom, or changes in dimension in response to the manipulation of
internal and extemal conditions, serious data limitations will obviously be a major
obstacle in building and testing dynamic models of CM. This is significant, because
really going beyond the metaphoric redescription of CM as chaos will require building
a dynamic model with strong psychobiological foundations.

Divergence of Nearby Trajectories

The stable presence of CM motivated us to invoke the concepts of dynamic systems
theory and talk about a possible CM attractor. In an effort to go beyond the meta-
phoric description, we constructed a phase portrait from the movement time series and
found evidence that it might contain the image of a CM attractor with a correlation
dimension between 3 and 4.

Similarly, it is the characteristic irregularity of CM which made us speculate that the
fluctuations in spontaneous motor activity might be governed by a chaotic dynamic
system. Since the defining (Farmer et al, 1983) or diagnostic (Wolf et al, 1985)
property of a chaotic attractor is the exponential divergence of nearby trajectories, the
next step in pushing beyond the metaphor should be to see if there is any evidence
for the divergence of trajectories in CM.

The divergence (and convergence) of nearby trajectories is quantified by Lyapunov
exponents, for which there are a number of equivalent definitions (Gershenfeld, 1988).
One of the more intuitive definitions, which relates directly to attempts to estimate
Lyapunov exponents from experimental data (e.g., Eckmann and Ruelle, 1985; Wolf et
al., 1985), is the following: In the k-dimensional state space of a dynamic system, take
an infinitesimal volume (a k-sphere) of states and measure the long-term expansion and
contraction of that sphere as it becomes ellipsoid due to the divergence (and conver-
gence) of the trajectories originating in the k-sphere. If the principal axes of the
ellipsoid after a time t are #,(f), then the ith Lyapunov exponent is defined as:

a;(0)

) ¥

where 4,(0) are the lengths of the axes at the start (i.e., the k-sphere). That is, 1, is the
average long-term expansion or contraction (in bits per time unit) of the corresponding
principal axis of the original infinitesimal sphere of initial states. The 4; are conven-
tionally labeled in order of decreasing magnitude, so 4, is the largest Lyapunov
exponent and corresponds to the direction of greatest divergence if it is positive. It is
important to note that the orientation of the ellipsoid changes as it evolves in time, so
the direction of greatest divergence does not correspond to a fixed direction in state
space. In view of the importance of knowing the dimension of an attractor, it is also

(6) 4; = lim —log

1o
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interesting to note that for many attractors the information dimension {for which the
correlation dimension is a lower bound) appears to be related in a rather simple way to
the spectrum of Lyapunov exponents (Farmer et al., 1983; Kaplan and Yorke, 1979;
Mayer-Kress and Kaneko, 1989).

It is common to take 4, > O as the definition of chaos (e.g., Farmer et al,, 1983). The
magnitude of A, reflects how rapidly the system’s behavior becomes unpredictable,
which results from the inability to resolve infinitesimal differences in initial condi-
tions. In contrast, a fixed point attractor in a three-dimensional state space has all
A; < 0, reflecting the convergence of infinitesimal perturbations in all directions. A
limit cycle in three-dimensional state space has A, = 0 and 1,, 4; < 0, with a similar
interpretation.

The calculation of all 4, is relatively easy when the differential equations defining
the dynamic system are known. The problem experimentalists face is how to estimate
4; from data. The Lyapunov exponents are preserved in the state space reconstructed
from a suitable time series, but there are two aspects of the theoretical definition of 4;
that must be addressed by any computational algorithm. First, the definition of 2,
is based on infinitesimal distances (the initial separation of nearby trajectories). The
limited resolution in the measurements that make up the experimental time series
makes very small length scales inaccessible, and noise (although it may play an im-
portant dynamic role) is space-filling at small length scales, so intermediate distances
must be used. Second, the definition of A, is based on infinite time, but data sets are
finite. Wolf and Vastano (1986) present some limited evidence that one of the most
widely used algorithms (Wolf et al., 1985) yields reasonable results in spite of these
inherent problems in applying the theoretical definition. They also argue that if an
estimate of 4, is to be used as a diagnostic test for the presence of chaotic dynamics,
then even the minimal information that 4, > 0 is useful. The algorithm of Wolf et al.
(1985) for estimating the largest Lyapunov exponent is intuitively straightforward.
First, the nearest neighbor to the initial point in the reconstructed state space is found,
and the separation between them, D, is calculated. The subsequent trajectories of these
two points are followed for a fixed amount of time, and the new separation between
the trajectories, [7, is calculated. A new test point is then found that is as close as
possible to the original trajectory but which preserves as much as possible the relative
orientation of the last-used point on the old test trajectory. This process is an attempt
to monitor the long-term behavior of a single axis in the theoretical ellipsoid of
evolving states. The procedure is repeated until the end of the data set is reached. The
overall time average of the values of log, /D obtained at each step is used as the
estimate of 4, .

There are a number of important decisions which must be made in attempting to
estimate the largest Lyapunov exponent from experimental data (Wolf et al, 1985).
These are not merely technical details, but represent fundamental issues that must be
addressed if we are going to bring dynamic theory into contact with data. In dealing
with these issues, we are forced to respect the constraints imposed on us by our
experimental systems.

The first set of decisions concemns how to reconstruct the phase portrait from the
time series. The objective is to facilitate accurate measurements of the separation
of trajectories in the state space. Thus a time delay that minimizes the compression
of the reconstructed trajectories will be optimal. This is the same criterion used to
select the time delay for estimating the attractor’s dimension. Similarly, the embedding
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space should be large enough to resolve the attractor’s geometry (i.e., the embedding
dimension should be larger than the attractor’s dimension), but no larger, since noise
plays an increasingly important role in the computations as the embedding dimension
increases. ;

The second decision is when to replace test trajectories with new ones in monitoring
their divergence. If replacements are done too often, the errors involved in finding
a new trajectory that is nearby and in the same orientation as the old one will accumu-
late and thereby reduce the precision of the estimate. In addition, if test trajectories are
replaced so often that the interval is on the order of noise-induced variationsin the
data, then 4, is likely to be overestimated because replacement is always done with
the closest point (subject to orientation constraints). On the other hand, replacement
should be done before the separation between the monitored trajectories grows to the
size of the attractor, after which 1, is likely to be underestimated.

Finally, there are significant issues concerning the amount and quality of data
required. Wolf et al. (1985) analyze the amount of data needed from a number of
perspectives, and suggest at least 10, where d is the attractor's dimension. This is
similar to the requirement others have recommended in estimating the attractor’s
dimension, and emphasizes the difficulty in measuring the divergence of trajectories on
a high-dimensional attractor. Data quality is degraded by the presence of noise, which
makes small distances in the reconstructed state space unusable. One solution is to
avoid small distances in choosing nearby trajectories at each replacement step. Another
solution is to smooth the time series to reduce the effects of noise. As Wolf et al.
(1985) point out, smoothing may distort the shape of the reconstructed attractor,
but they find that modest low-pass filtering often has little effect on the long-term rate
at which nearby trajectories diverge.

Estimating Divergence on a Cylic Motor Activity AHractor

If we are to have any justification for thinking that CM might be the readout of a
chaotic dynamic system, we must look for evidence of “the dynamic diagnostic for
chaotic systems” (Wolf et al, 1985), a positive Lyapunov exponent. The time series in
figure 5.1, which yielded some evidence for a finite-dimensional CM attractor, was
therefore analyzed in an attempt to estimate the largest Lyapunov exponent.

The time series was embedded in a five-dimensional embedding space using
Takens's (1981) method of delays. The embedding dimension was selected to be
larger than the estimated dimension of the attractor (between 3 and 4) to avoid mix-
ing of different regions of the reconstructed attractor, which would be catastrophic for
the estimation of the rate at which trajectories diverge. The time delay was 15 seconds,
which was found previously to provide an optimal separation of the trajectories in the
reconstructed state space, and would therefore facilitate an accurate measurement of
their rate of divergence,

The fixed evolution time algorithm of Wolf et al. (1985) was used, with computa-
tions done by FORTRAN routines written by Schaffer et al. (1989). The fixed evolu-
tion time refers to the fact that test trajectories are replaced after their divergence
from the original (fiducial) trajectory has been followed for a fixed interval of time. The
computations were repeated for a range of evolution times in order to obtain some
information about the stability of the estimates of 4,, and to identify at what point
overestimation (with short evolution times) became evident. Spectral analysis of the



Behavioral Chaos 139

0.12 T 1 1 ] 1
>
=
w n -
© (.08
@
o
= :
| -
et
Q
®  0.04
Q.
73

0'00 1 i 1 3 ]

©o 5 10 15 20 25 30
Frequency {cycles/min)

Figure 5.6

Power spectrum of the data in figure 5.1 (unsmoothed) using a Tukey lag window (Jenkins and Waitts,
1968) covering 150 points, which has a bandwidth of .53 cycle/min. Broken lines are the 99% confidence
limits for the spectral estimates of a white noise process.

time series (figure 5.6) indicated that the dominant period in the data was near 40
seconds {1.5 cycles/min), which was taken as a measure of the average orbital time for
trajectories on the CM attractor. The largest Lyapunov exponent was estimated for
evolution times ranging from 25% to 300% of the average orbital time.

Acknowledging the limited resolution in the original measurements, the initial sepa-
ration between the fiducial and any test trajectory was not permitted to be less than
10% of the measurement range. In order to provide for an adequate number of replace-
ment points to select from, the maximum allowable separation between the fiducial and
any test trajectory was set at 30% of the measurement range, which is rather large.

The results of these computations are shown in figure 5.7. It is clear that over quite
a large range of evolution times, the estimates of the largest Lyapunov exponent are
uniformly greater than 0. The estimate of 4, is greatest using an evolution time of 10
seconds, with a rather precipitous drop with evolution times of 20 or 30 seconds.
Evolution times of 30 to 60 seconds yield more stable estimates between 1.1 and
1.5 x 1072 bits/sec. For evolution times longer than 60 seconds, the estimates of 4,
are somewhat lower and range from 0.7 to 1.0 x 1072 bits/sec.

Since the dynamics generating CM are unknown, it is difficult to know which
estimates of 4, to use. Wolf et al. (1985) note that for systems that produce substantial
divergence of nearby trajectories during each orbit, evolution times between 50% and
150% of the average orbital time yield the most reliable estimates of 4, with longer
evolution times tending to underestimate 4,. If CM were governed by such a mecha-
nism, evolution times between 20 and 60 seconds might be expected to yield the most
reliable estimates in this case. However, the estimates do not appear to stabilize until
evolution times of 30 seconds or longer are used. Given the expected tendency toward
underestimation as evolution times get longer, perhaps the estimates based on 30 to
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Estimates of the largest Lyapunov exponent, and 95% confidence intervals, for evolution times between
10 and 120 seconds.

60 or 70 seconds, which represent the first relative plateau or stable region after the
rapid decline, should be used. This would put 4, in the range of 1.0 to 1.5 x 1072
bits/sec, with 95% confidence intervals of +0.5 x 10~2 bits/sec.

Qur ability to accurately estimate the magnitude of A, is clearly limited, which
should inhibit us from making strong statements about the precise rate at which nearby
trajectories diverge in this system. On the other hand, there appears to be relatively
good evidence in this case to support the conclusion that 1; > 0. Numerous other
calculations in which 2, was estimated using the algorithm of Wolf et al. with less
defensible input parameters yielded similar results, always with 4, > 0. Thus it appears
that the defining or diagnostic criterion for chaotic dynamics has been satisfied.

Implications of Diverging Trajectories

There are at least two important implications of finding evidence that the irregular
fluctuations in spontaneous movement might be due to chaotic dynamics in the under-
lying mechanism. First, it provides some justification for considering the sustained
oscillations and their irregularity as equally fundamental properties of the same mecha-
nism, That is, it may not be necessary to postulate stochastic events or noisy environ-
ments as sources of the irregularity distinct from the regularity.

The second important implication of finding evidence for chaotic dynamics govern-
ing CM is the constraints and guidance it provides for-thinking about the functional
significance of this type of behavioral organization. If CM is fundamentally unpredict-
able, then we cannot look for possible consequences of CM that would depend on
predictability. For example, it would make no sense to view CM as a timekeeping
device. Instead, we should think of ways in which bounded unpredictability might be
particularly useful. Others have suggested that chaotic dynamics in the central nervous
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system is highly adaptive, although the proof of this contention has been difficult o
establish (Mpitsos et al., 1988; Skarda and Freeman, 1987).

In the newborn and young infant, spontaneous motor activity constitutes an impor-
tant link to the physical and social environment. Increased activity is likely to elicit
responses from the environment, even change it, and is also likely to reorient the
infant’s focus of attention. Decreased activity, on the other hand, permits sustained
attention to a portion of the environment and the opportunity to process information
extracted from the environment. Thus it has been suggested that fluctuations in motor
activity may be especially useful because they combine the benefits of action and
inaction over periods of minutes (Robertson, 1989).

Is there any reason to think that chaotic fluctuations might have different or greater
benefits than regular oscillation? The exponential divergence of nearby trajectories
on a CM attractor means that in the long run the fluctuations are unpredictable. In the
short run predictability is greater, in contrast to random fluctuations (Guckenheimer,
1982). Perhaps there are benefits to somewhat predictable actions in the short run and
unpredictable actions in the long run. Over short time scales, repetitive action patterns
might support stable interactions with the environment, especially the social environ-
ment (as in behavioral dialogues with an adult). But over longer time scales, irregularity
in the infant’s action might reduce the chance of becoming locked into repetitive
patterns of interaction with the environment, facilitate exploration, and maximize the
information extracted from the environment.

We should remember, of course, that the existence of fluctuations in activity (chaotic
or otherwise) is not, in itself, evidence of their utility (Gould and Lewontin, 1979). It is
also possible that chaotic dynamics in CM has no benefits, or may instead be disrup-
tive. For example, it may significantly reduce the success of early social interactions
while adding little or nothing to the efficient extraction of information from the
environment. These are empirical questions which developmental studies should go a
long way in answering. '

The theoretical significance of A, > 0 in CM is that irregularity is being produced
by the system, not imposed on it from the outside. Thus we are forced to consider the
functional implications for an action system driven by such a mechanism. That is, we
must examine the possible benefits (as well as the costs) of built-in unpredictability,
something we are not accustomed to doing in the functional analysis of behavioral
organization.

Next Steps

Our main goal has been to illustrate how the application of dynamic systems theory
might be taken beyond the metaphoric level of redescription by asking some specific
questions about a particular behavioral phenomenon. We have focused very closely
on the two basic characteristics of CM which motivated the use of concepts from
dynamic systems theory. The stability of CM suggested, at a metaphoric level, the
concept of an attractor. The irregularity of CM suggested that the underlying dynam-
ics might be chaotic. In both cases, we illustrated what was involved in going
beyond the metaphor in order to (1) obtain the first level of knowledge necessary to
characterize an attractor (its dimension) and (2) look for diagnostic symptoms of chaos
{exponential divergence of trajectories).
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What else might be done to bring dynamic theory and experimental data into
contact for this particular phenomenon? There are a number of reasonable next steps:
(1) Look for more evidence for the existence of a CM attractor; (2) characterize the
properties of the attractor and the underlying dynamics in more detail; (3) search for
evidence of structural instabilities in the CM attractor (bifurcations) and the relevant
control parameters. In the next few sections we briefly explore these possibilities.

More Evidence for an Attractor

The central dilemma faced by any experimentalist hoping to apply dynamic systems
theory is ignorance, in particular, ignorance of the state variables and therefore an
inability to search directly in the system's state space for an attractor. Instead, we must
conduct an indirect search in the state space reconstructed from experimental time
series. Nevertheless, there are at least two kinds of experiments that would provide
converging evidence for the existence of a CM attractor, both of which use a perturba-
tion paradigm.

First, if typical CM does indeed reflect the existence of an attractor, then it might be
possible to indirectly monitor the return to the attractor following small perturbations.
For example, projections of the reconstructed phase portrait could be studied graphi-
cally for evidence that perturbed trajectories return to the original region of the
reconstructed state space. It might also be possible to make rough estimates of the time
taken to return, which would provide some information about the magnitude of nega-
tive Lyapunov exponents in the near vicinity of the attractor. Evidence that the corre-
lation dimension and 1, had not changed (with respect to the preperturbation values)
after the transient deflection and return had died out would increase our confidence
that trajectories had returned to the same attractor.

A second set of experiments inducing larger perturbations in CM might reveal the
boundary "of the basin of attraction, and perhaps the existence of additional CM
attractors representing qualitatively different modes of organization in spontaneous
motor activity. For example, experiments that vary the strength of the perturbation
pulse might yield evidence of a discontinuous jump to a new region of state space
above a critical puise amplitude. If it is stable, the postperturbation phase portrait could
be analyzed in the same ways as the preperturbation phase portrait, by estimating the
correlation dimension, the largest Lyapunov exponent, and studying the response to
small perturbations. Furthermore, if a second attractor exists, one would predict return
times to the preperturbation attractor to increase as the critical pulse amplitude was
approached.

In principle, much detailed information about CM state space, attractors, and their
basin boundaries could be obtained from systematic perturbation experiments. In real-
ity, the number of experiments that would have to be performed in order to reveal that
level of detail is likely to be prohibitive. It is more reasonable to expect that only
critical (or nearly critical) experiments will actually be done. That is, experiments to
test the stability of the atiractor and to test for the existence of a second attractor are
far more likely to be done than experiments to trace out the basin boundaries between
attractors. A good dynamic model of CM, however, would guide the experimentation,
and through numerical simulations might also provide useful information about re-
gions of state space that will not be explored in real experiments.

Information about the extent and strength of CM attractors (if they exist), and their
relative sensitivity to different types of perturbations (e.g., stimulation in different
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sensory modalities), will also be relevant to a functional analysis of CM. Detailed
knowledge of differential sensitivities might suggest conditions under which the dy-
namic system underlying spontaneous activity could be bumped out of the basin of
high-dimensional attractor {which might facilitate extracting information from a re-
latively static environment) to a lower-dimensional attractor (which might permit
focused attention or even entrainment by periodic environmental stimulation). The
possibility that qualitatively different modes of behavioral organization, with corre-
sponding differences in functional significance, could be accounted for in specific detail
by the same underlying mechanism would be a significant contribution of dynamic
theory. An important theoretical (if not practical) challenge, however, would be to
distinguish such events from bifurcations induced by changing control parameters, as

discussed below.

More Detailed Characterization of the Attractor

As Farmer et al. (1983) argue, an attractor’s dimension is the first level of knowledge
needed to characterize its properties. But as we alluded to earlier, the calculation of
the correlation dimension using the method proposed by Grassberger and Procaccia
(1983) results in the loss of other information. In particular, information about non-
uniformity in the dimension of an attractor is lost when N{(r) is averaged over the
attractor.

Mayer-Kress (e.g., 1986) has argued that in some cases it is better to select a set of
reference points on the reconstructed attractor and estimate the local dimension at each
of those reference points. The variation in local dimension among the reference points
would indicate the dimensional nonuniformity of the attractor. For example, an ex-
treme flattening and compression of trajectories in one region of the attractor would
be reflected by a drop in the estimated local dimension for reference points in that
region. Futthermore, the evolution of dimensional complexity can be studied by esti-
mating local dimensions for a sequence of reference points ordered in time. Either way,
information about dimensional nonuniformity may be critical in detecting structural
changes in reconstructed phase portraits as a potential control parameter is varied.

The defining property of a chaotic attractor is the exponential rate at which nearby
trajectories on the attractor diverge as they evolve in time (Farmer et al, 1983). This
leads to the well-known sensitive dependence on initial conditions, since the inability
to specify the state of the system with more than finite precision means that initially
indistinguishable states are later found to be distinct. The sensitive dependence on
initial conditions, therefore, is the basis for the unpredictability of a chaotic dynamic
system in practice. The focus on unpredictability, although perfectly legitimate and a
fundamental property of chaotic dynamics, reveals a conceptual bias. The bias is that
predicting the future is what really matters.

An equivalent interpretation is that a system which exhibits a sensitive dependence
on initial conditions is one that produces information (Eckmann and Ruelle, 1985). That
is, states of the system that are not distinguishable at one moment evolve into states
that are. The second measurement therefore yields additional information about the
system. Entropy is the average rate at which information is produced by a chaotic
system, and has a number of technical definitions. Fraser (1986) describes a method of
calculating metric entropy from a time series using mutual information. Entropy is also
related to the Lyapunov exponents (Eckmann and Ruelle, 1985), which is not surpris-
ing since they quantify the rate at which the separation of nearby trajectories changes.
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If for no other reason than to correct an interpretive bias, it might be useful to
calculate entropy when characterizing a CM attractor. However, in addition to quan-
tifying the average rate of information production by the mechanism generating .CM,
a consideration of entropy might also suggest novel ways to view the functional
consequences of CM in the real world. As discussed below, to the extent that informa-
tion about the environment is acquired as the result of actions in it, 2 behavioral system
with positive entropy may increase the information yield from exploration of the
surroundings.

Finally, it may be worth considering an approach to characterizing the reconstructed
phase portrait which makes fewer assumptions about the underlying dynamics and the
relationship between the experimental time series and the dynamic system. Eckmann,
Kamphorst, and Ruelle (1987} have proposed a graphic tool, called a recurrence plot,
which yields relatively low-level (i.e., unprocessed) information about temporal pat-
terns in the trajectories of the reconstructed phase portrait.

A recurrence plot (figure 5.8) is constructed by taking each point y; in the recon-
structed state space, following the trajectory from that point on, and measuring the
distance (in state space) from the starting point. As the trajectory evolves, it will return
to regions of the state space that are close to its starting point. The closeness of the
recurrences is plotted (as shades of gray in figure 5.8) as a function of the starting point
and elapsed time with respect to the starting point.

The pattern of close encounters displayed in the recurrence plot represents space-
time information extracted from the reconstructed state space. This gives direct and
independent information about dynamic quantities (local divergence rates) which are
used in the calculation of both Lyapunov exponents and Kolmogorov-Sinai entropies.
The lengths of regions representing close recurrence give direct measures of the sepa-
ration of high-dimensional state-space trajectories. As a diagnostic tool, recurrence
plots can”also provide information about the sensitivity of the system to external
perturbations. The information can be quite rich (see figure 5.8), and can reveal compli-
cated patterns which might be useful in visualizing the effects of perturbations or
parameter changes in experiments or simulations. For the present, however, the rich-
ness of recurrence plots exceeds our ability to interpret the patterns.

Structural Instability of the Attractor
Up to this point, we have focused on how to identify and characterize the image of a
CM attractor (or multiple attractors) in the state space reconstructed from an experi-
mental time series. The assumption has been that the attractor was structurally stable
under normal conditions. That is, at a metaphoric level the apparently strong sta-
tionarity of CM suggested the existence of an attractor. Estimating its dimension and
determining if there was evidence for the exponential divergence of trajectories took
us two important steps beyond the metaphor. We have also described, in far less
detail, some further steps that might be taken. Although some (e.g., perturbation
experiments) are designed to probe the local stability (in state space) of the mechanism
generating CM, we have not considered the structural stability of the attractor when
important parameters are varied. It is to this subject of bifurcations that we now briefly
turn. '
Bifurcation theory (e.g., Guckenheimer and Holmes, 1983) deals with the qualitative
changes that occur in the dynamics of a system as a consequence of varying parameter
values. The descriptive study of bifurcations is relatively straightforward when the
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state variables, parameters, and differential equations defining the dynamic system are
known. It is then possible to simulate the evolution of the dynamic system numerically
for different parameter values and identify bifurcation points where attractors undergo
structural change. For example, at a particular value of some parameter, a previously
stable fixed-point attractor might become unstable and be replaced by a limit cycle (a
Hopf bifurcation). That is, a system which in one parameter range has a constant
output may oscillate in an adjacent range of the same parameter.

Structural stability and bifurcation are seductive metaphors to those of us in the
behavioral and developmental sciences. Because we are interested in patterns and
organization, and especially in how they emerge, transform, and disappear in both real
and developmental time, the concept of bifurcation seems particularly well suited to
our needs. Furthermore, the possibility of accounting for qualitatively different types
of organization (homeostasis, oscillations, and chactic fluctuations) and the transitions
between them with the same theory is especially attractive. Finally, the notion that
potentially simple, scalar quantities that change in a slow, gradual fashion can trigger
massive reorganization of the whole system is almost too good to be true. It is the way
in which parameter space and state space are linked by the concept of bifurcation that
permits us to think of control, regulation, and the influence of measurable factors in the
internal and external environments of the organism.

How can we go beyond the bifurcation metaphor? For the particular phenomenon
of CM, we would first need evidence of the structural stability of an attractor. This
means evidence that a CM attractor exists (as discussed in preceding sections), plus
evidence that it is structurally unchanged for a range of values of some parameter.
Then we would need evidence of structural instability as the parameter was varied
through a critical interval, with the appearance of a qualitatively different attractor or
attractors with further change in the parameter.

But now we must deal with another category of ignorance. Not only do we not
know the state space of CM, we also do not know the parameter space. We could do
experiments and manipulate factors that might be important based on other knowl-
edge of the behavioral system, such as communication along the spinal cord in the fetal
rat (Robertson and Smotherman, 1990), or the rate of thythmic driving by an infant’s
mother during social interaction (Robertson, 1989). Such experiments could yield use-
ful information about the structural stability and instability of CM, and might reveal
different routes into and out of the (typical) chaotic dynamics for CM. Of course, any
such experiments would have to be done in a state space reconstructed from move-
ment time series without the benefit of any specific knowledge about the dynamics
underlying CM. Once again, the need for a dynamic model for CM, in which parame-
ters with behavioral or biological underpinnings are explicitly represented and can be
studied directly, becomes apparent.

Mechanisms and Models

In the attempt to understand the behavioral phenomenon of CM, an important objec-
tive is to build a successful model of the underlying mechanism. What, then, is the
consequence of having begun to push dynamic systems theory beyond the level of
metaphoric redescription when it comes to the model-building process? The conse-
quence is that, if the basic results are confirmed in more samples of CM, there is
justification for: considering models based on chaotic dynamic systems. That is, the
dynamic model and its biological substrate should be low-dimensional and capable of
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generating complex fluctuations that are sustained and irregular; both core character-
istics of CM should be inherent properties of the same, effectively simple mechanism.

One possible biological substrate is a single oscillatory network in the central
nervous system which generates the chaotic fluctuations in motor output. An example
of a single chaotic neural oscillator has been described by Mpitsos et al. (1988) in the
buccal ganglion of the sea slug Pleurobranchaca californica. Although a single source
would be parsimonious, it is not supported by the available data. It was recently shown
that the fetal rat near the end of gestation exhibits fluctuations in spontaneous motor
activity which are quantitatively similar to human fetal CM in terms of their spectral
properties (Smotherman, Robinson, and Robertson, 1988). When the spinal cord is
transected in a midthoracic location, movements of the rear legs are uncoupled from
other body and limb movements, but both rear leg and non-rear leg activity continue
to exhibit the temporal organization characteristic of CM (Robertson and Smotherman,
1990). These results rule out a single source of oscillations in the rat fetus. They are in
other respects also consistent with the results of a noninvasive perturbation experi-
ment with human neonates (Robertson, in press) and suggest that rostral sources may
be slower than caudal sources, with the latter normally dominant.

Another possible biological substrate is two or more oscillatory networks which
alone are quite stable but which are coupled together in such a way that their com-
bined interactions produce a chaotic output. Neural oscillators are well known to
produce stable thythmic movements in vertebrate nervous systems (Cohen, Rossignol,
and Grillner, 1988). An example of a group of stable oscillators that produce an
apparently chaotic motor output by virtue of their coupling has been described by
Cohen, Baker, Guan, and Kiemel (1990) in lampreys subjected to partial spinal cord
transections. Following regeneration of the transected fiber tracts, the swimming
motor pattern produced by the spinal cord becomes highly unstable. The pattern can
be easily reproduced by assuming that the intersegmental coordinating system has
only been partially restored, an assumption well justified by direct experimental evidence
(Cohen, Baker, and Dobrov, 1989). The modeling demonstrated quite clearly how
neural oscillators could be coupled together to produce chactic motor patterns.

The data obtained from the fetal rats with spinal cord transections (Robertson and
Smotherman, 1990) were not subjected to the kinds of analyses illustrated in this
chapter. However, spectral analysis indicated that the fluctuations generated above and
below the transection continued to be irregular. Thus it is unlikely that CM is the
consequence of only two oscillators that are independently stable but yield chaotic
output when coupled. The possibility remains, however, that there are multiple sources
distributed throughout the motor system which interact to produce CM. It is also
possible that there are no localized sources, but that the fluctuations in motor activity
emerge only at the macroscopic level.

We clearly know very little about the biclogical substrate of CM. What we do know
puts some constraints, such as the requirement for more than one source, on any
specific dynamic model that might eventually be developed. But the guidance pro-
vided by our minimal knowledge is not great. We are therefore a long way from the
goal of building a dynamic model of CM in which the state variables and parameters
have a clear correspondence with psychobiological and environmental factors. Thus
the obvious benefits of such a model described throughout this chapter in (1) searching
for multiple attractors and the boundaries between their basins of attraction, (2) pre-
dicting how various intrinsic or extrinsic perturbations or parameter changes might
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qualitatively change the organization of CM, and (3) éuggesting ways in which a
specific chaotic dynamic system might have functional consequences for how infants
act on the world and extract information from it, are all yet to be realized. -

Conclusion

The point of this chapter has been to illustrate what might be involved in taking our
seduction by dynamic systems theory a few steps beyond the mere redescription of
what we already know. We have argued that it is necessary to examine specific
phenomena as closely as possible, to bring the theory into contact with the data, and
to look for concrete evidence that the fundamental explanatory concepts provided by
dynamic systems theory are appropriate.

These are, however, just the preliminaries. It is encouraging to think that a theory
with successful applications across diverse scientific disciplines might be brought to
bear on questions of behavior and development. The real test, however, is not whether
dynamic systems theory can account for the phenomena we study, but whether it
yields any new insights, integrates previously unrelated empirical facts, or in some
other way leads to a deeper understanding of those phenomena:

We illustrated in some detail how the application of dynamic systems theory could
be taken beyond the metaphor for the specific phenomenon of human CM. More
extensive work is of course needed to make this more than an illustration. What
might be the fundamental insight gained in this process for the specific case of CM?
The fundamental insight, with evidence to support it, would seem to be that the
complex fluctuations in spontaneous motor activity can be explained by a dynamic
system with relatively few degrees of freedom, and that both the sustained presence
of oscillations and their irregularity might be inherent properties of the same, effective-
ly simple'mechanism. This is in contrast to our usual tendency to think of regularity as
the manifestation of a lawful underlying mechanism and irregularity as the conse-
quence of stochastic inputs to the mechanism.

A significant consequence of this insight into the mechanism of CM is that it
reorients our thinking about the possible functional benefits (or costs) of CM. We are
led to consider the adaptive consequences of unpredictability built in to an action
system that regulates the young infant’s interaction with the physical and social envi-
ronment. A common assumption, of course, is that the adaptive value or utility of
behavioral organization lies in its predictable components.

There is no question that dynamic systems theory can provide us with rich meta-
phors in our attempt to understand behavior and development. Although we face
severe limitations imposed by our ignorance of the systems we study and our inability
to measure them accurately over long periods of time, we should nevertheless try,
whenever possible, to go beyond metaphor in our analysis of specific phenomena
in order to put any new insights on firm ground.
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